Do you want to publish a course? Click here

The Movie Graph Argument Revisited

63   0   0.0 ( 0 )
 Added by Russell K. Standish
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In this paper, we reexamine the Movie Graph Argument, which demonstrates a basic incompatibility between computationalism and materialism. We discover that the incompatibility is only manifest in singular classical-like universes. If we accept that we live in a Multiverse, then the incompatibility goes away, but in that case another line of argument shows that with computationalism, the fundamental, or primitive materiality has no causal influence on what is observed, which must must be derivable from basic arithmetic properties.



rate research

Read More

91 - Chenwei Shi 2017
This paper combines two studies: a topological semantics for epistemic notions and abstract argumentation theory. In our combined setting, we use a topological semantics to represent the structure of an agents collection of evidence, and we use argumentation theory to single out the relevant sets of evidence through which a notion of beliefs grounded on arguments is defined. We discuss the formal properties of this newly defined notion, providing also a formal language with a matching modality together with a sound and complete axiom system for it. Despite the fact that our agent can combine her evidence in a rational way (captured via the topological structure), argument-based beliefs are not closed under conjunction. This illustrates the difference between an agents reasoning abilities (i.e. the way she is able to combine her available evidence) and the closure properties of her beliefs. We use this point to argue for why the failure of closure under conjunction of belief should not bear the burden of the failure of rationality.
The human mind is still an unknown process of neuroscience in many aspects. Nevertheless, for decades the scientific community has proposed computational models that try to simulate their parts, specific applications, or their behavior in different situations. The most complete model in this line is undoubtedly the LIDA model, proposed by Stan Franklin with the aim of serving as a generic computational architecture for several applications. The present project is inspired by the LIDA model to apply it to the process of movie recommendation, the model called MIRA (Movie Intelligent Recommender Agent) presented percentages of precision similar to a traditional model when submitted to the same assay conditions. Moreover, the proposed model reinforced the precision indexes when submitted to tests with volunteers, proving once again its performance as a cognitive model, when executed with small data volumes. Considering that the proposed model achieved a similar behavior to the traditional models under conditions expected to be similar for natural systems, it can be said that MIRA reinforces the applicability of LIDA as a path to be followed for the study and generation of computational agents inspired by neural behaviors.
Decision-making usually takes five steps: identifying the problem, collecting data, extracting evidence, identifying pro and con arguments, and making decisions. Focusing on extracting evidence, this paper presents a hybrid model that combines latent Dirichlet allocation and word embeddings to obtain external knowledge from structured and unstructured data. We study the task of sentence-level argument mining, as arguments mostly require some degree of world knowledge to be identified and understood. Given a topic and a sentence, the goal is to classify whether a sentence represents an argument in regard to the topic. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata, building a graph based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. Also, we build a second graph based on topic-specific articles found via Google to tackle the general incompleteness of structured knowledge bases. Combining these graphs, we obtain a graph-based model which, as our evaluation shows, successfully capitalizes on both structured and unstructured data.
Heterogeneous graph is a kind of data structure widely existing in real life. Nowadays, the research of graph neural network on heterogeneous graph has become more and more popular. The existing heterogeneous graph neural network algorithms mainly have two ideas, one is based on meta-path and the other is not. The idea based on meta-path often requires a lot of manual preprocessing, at the same time it is difficult to extend to large scale graphs. In this paper, we proposed the general heterogeneous message passing paradigm and designed R-GSN that does not need meta-path, which is much improved compared to the baseline R-GCN. Experiments have shown that our R-GSN algorithm achieves the state-of-the-art performance on the ogbn-mag large scale heterogeneous graph dataset.
Sources of commonsense knowledge support applications in natural language understanding, computer vision, and knowledge graphs. Given their complementarity, their integration is desired. Yet, their different foci, modeling approaches, and sparse overlap make integration difficult. In this paper, we consolidate commonsense knowledge by following five principles, which we apply to combine seven key sources into a first integrated CommonSense Knowledge Graph (CSKG). We analyze CSKG and its various text and graph embeddings, showing that CSKG is well-connected and that its embeddings provide a useful entry point to the graph. We demonstrate how CSKG can provide evidence for generalizable downstream reasoning and for pre-training of language models. CSKG and all its embeddings are made publicly available to support further research on commonsense knowledge integration and reasoning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا