Do you want to publish a course? Click here

Dodging Attack Using Carefully Crafted Natural Makeup

221   0   0.0 ( 0 )
 Added by Asaf Shabtai
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep learning face recognition models are used by state-of-the-art surveillance systems to identify individuals passing through public areas (e.g., airports). Previous studies have demonstrated the use of adversarial machine learning (AML) attacks to successfully evade identification by such systems, both in the digital and physical domains. Attacks in the physical domain, however, require significant manipulation to the human participants face, which can raise suspicion by human observers (e.g. airport security officers). In this study, we present a novel black-box AML attack which carefully crafts natural makeup, which, when applied on a human participant, prevents the participant from being identified by facial recognition models. We evaluated our proposed attack against the ArcFace face recognition model, with 20 participants in a real-world setup that includes two cameras, different shooting angles, and different lighting conditions. The evaluation results show that in the digital domain, the face recognition system was unable to identify all of the participants, while in the physical domain, the face recognition system was able to identify the participants in only 1.22% of the frames (compared to 47.57% without makeup and 33.73% with random natural makeup), which is below a reasonable threshold of a realistic operational environment.



rate research

Read More

This paper focuses on high-transferable adversarial attacks on detectors, which are hard to attack in a black-box manner, because of their multiple-output characteristics and the diversity across architectures. To pursue a high attack transferability, one plausible way is to find a common property across detectors, which facilitates the discovery of common weaknesses. We are the first to suggest that the relevance map from interpreters for detectors is such a property. Based on it, we design a Relevance Attack on Detectors (RAD), which achieves a state-of-the-art transferability, exceeding existing results by above 20%. On MS COCO, the detection mAPs for all 8 black-box architectures are more than halved and the segmentation mAPs are also significantly influenced. Given the great transferability of RAD, we generate the first adversarial dataset for object detection and instance segmentation, i.e., Adversarial Objects in COntext (AOCO), which helps to quickly evaluate and improve the robustness of detectors.
Deep neural networks, particularly face recognition models, have been shown to be vulnerable to both digital and physical adversarial examples. However, existing adversarial examples against face recognition systems either lack transferability to black-box models, or fail to be implemented in practice. In this paper, we propose a unified adversarial face generation method - Adv-Makeup, which can realize imperceptible and transferable attack under black-box setting. Adv-Makeup develops a task-driven makeup generation method with the blending module to synthesize imperceptible eye shadow over the orbital region on faces. And to achieve transferability, Adv-Makeup implements a fine-grained meta-learning adversarial attack strategy to learn more general attack features from various models. Compared to existing techniques, sufficient visualization results demonstrate that Adv-Makeup is capable to generate much more imperceptible attacks under both digital and physical scenarios. Meanwhile, extensive quantitative experiments show that Adv-Makeup can significantly improve the attack success rate under black-box setting, even attacking commercial systems.
Human can easily recognize visual objects with lost information: even losing most details with only contour reserved, e.g. cartoon. However, in terms of visual perception of Deep Neural Networks (DNNs), the ability for recognizing abstract objects (visual objects with lost information) is still a challenge. In this work, we investigate this issue from an adversarial viewpoint: will the performance of DNNs decrease even for the images only losing a little information? Towards this end, we propose a novel adversarial attack, named textit{AdvDrop}, which crafts adversarial examples by dropping existing information of images. Previously, most adversarial attacks add extra disturbing information on clean images explicitly. Opposite to previous works, our proposed work explores the adversarial robustness of DNN models in a novel perspective by dropping imperceptible details to craft adversarial examples. We demonstrate the effectiveness of textit{AdvDrop} by extensive experiments, and show that this new type of adversarial examples is more difficult to be defended by current defense systems.
In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biometric modalities and its realization on face, finger and iris data is described in detail. To the best of our knowledge, the presented design is the first to employ such a diverse set of electromagnetic spectrum bands, ranging from visible to long-wave-infrared wavelengths, and is capable of acquiring large volumes of data in seconds. Having performed a series of data collections, we run a comprehensive analysis on the captured data using a deep-learning classifier for presentation attack detection. Our study follows a data-centric approach attempting to highlight the strengths and weaknesses of each spectral band at distinguishing live from fake samples.
Computer vision and machine learning can be used to automate various tasks in cancer diagnostic and detection. If an attacker can manipulate the automated processing, the results can be devastating and in the worst case lead to wrong diagnosis and treatment. In this research, the goal is to demonstrate the use of one-pixel attacks in a real-life scenario with a real pathology dataset, TUPAC16, which consists of digitized whole-slide images. We attack against the IBM CODAITs MAX breast cancer detector using adversarial images. These adversarial examples are found using differential evolution to perform the one-pixel modification to the images in the dataset. The results indicate that a minor one-pixel modification of a whole slide image under analysis can affect the diagnosis by reversing the automatic diagnosis result. The attack poses a threat from the cyber security perspective: the one-pixel method can be used as an attack vector by a motivated attacker.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا