Do you want to publish a course? Click here

Multispectral Biometrics System Framework: Application to Presentation Attack Detection

77   0   0.0 ( 0 )
 Added by Leonidas Spinoulas
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we present a general framework for building a biometrics system capable of capturing multispectral data from a series of sensors synchronized with active illumination sources. The framework unifies the system design for different biometric modalities and its realization on face, finger and iris data is described in detail. To the best of our knowledge, the presented design is the first to employ such a diverse set of electromagnetic spectrum bands, ranging from visible to long-wave-infrared wavelengths, and is capable of acquiring large volumes of data in seconds. Having performed a series of data collections, we run a comprehensive analysis on the captured data using a deep-learning classifier for presentation attack detection. Our study follows a data-centric approach attempting to highlight the strengths and weaknesses of each spectral band at distinguishing live from fake samples.



rate research

Read More

With the development of presentation attacks, Automated Fingerprint Recognition Systems(AFRSs) are vulnerable to presentation attack. Thus, numerous methods of presentation attack detection(PAD) have been proposed to ensure the normal utilization of AFRS. However, the demand of large-scale presentation attack images and the low-level generalization ability always astrict existing PAD methods actual performances. Therefore, we propose a novel Zero-Shot Presentation Attack Detection Model to guarantee the generalization of the PAD model. The proposed ZSPAD-Model based on generative model does not utilize any negative samples in the process of establishment, which ensures the robustness for various types or materials based presentation attack. Different from other auto-encoder based model, the Fine-grained Map architecture is proposed to refine the reconstruction error of the auto-encoder networks and a task-specific gaussian model is utilized to improve the quality of clustering. Meanwhile, in order to improve the performance of the proposed model, 9 confidence scores are discussed in this article. Experimental results showed that the ZSPAD-Model is the state of the art for ZSPAD, and the MS-Score is the best confidence score. Compared with existing methods, the proposed ZSPAD-Model performs better than the feature-based method and under the multi-shot setting, the proposed method overperforms the learning based method with little training data. When large training data is available, their results are similar.
Deep learning-based video manipulation methods have become widely accessible to the masses. With little to no effort, people can quickly learn how to generate deepfake (DF) videos. While deep learning-based detection methods have been proposed to identify specific types of DFs, their performance suffers for other types of deepfake methods, including real-world deepfakes, on which they are not sufficiently trained. In other words, most of the proposed deep learning-based detection methods lack transferability and generalizability. Beyond detecting a single type of DF from benchmark deepfake datasets, we focus on developing a generalized approach to detect multiple types of DFs, including deepfakes from unknown generation methods such as DeepFake-in-the-Wild (DFW) videos. To better cope with unknown and unseen deepfakes, we introduce a Convolutional LSTM-based Residual Network (CLRNet), which adopts a unique model training strategy and explores spatial as well as the temporal information in deepfakes. Through extensive experiments, we show that existing defense methods are not ready for real-world deployment. Whereas our defense method (CLRNet) achieves far better generalization when detecting various benchmark deepfake methods (97.57% on average). Furthermore, we evaluate our approach with a high-quality DeepFake-in-the-Wild dataset, collected from the Internet containing numerous videos and having more than 150,000 frames. Our CLRNet model demonstrated that it generalizes well against high-quality DFW videos by achieving 93.86% detection accuracy, outperforming existing state-of-the-art defense methods by a considerable margin.
Iris recognition systems are vulnerable to the presentation attacks, such as textured contact lenses or printed images. In this paper, we propose a lightweight framework to detect iris presentation attacks by extracting multiple micro-stripes of expanded normalized iris textures. In this procedure, a standard iris segmentation is modified. For our presentation attack detection network to better model the classification problem, the segmented area is processed to provide lower dimensional input segments and a higher number of learning samples. Our proposed Micro Stripes Analyses (MSA) solution samples the segmented areas as individual stripes. Then, the majority vote makes the final classification decision of those micro-stripes. Experiments are demonstrated on five databases, where two databases (IIITD-WVU and Notre Dame) are from the LivDet-2017 Iris competition. An in-depth experimental evaluation of this framework reveals a superior performance compared with state-of-the-art algorithms. Moreover, our solution minimizes the confusion between textured (attack) and soft (bona fide) contact lens presentations.
For enterprise, personal and societal applications, there is now an increasing demand for automated authentication of identity from images using computer vision. However, current authentication technologies are still vulnerable to presentation attacks. We present RoPAD, an end-to-end deep learning model for presentation attack detection that employs unsupervised adversarial invariance to ignore visual distractors in images for increased robustness and reduced overfitting. Experiments show that the proposed framework exhibits state-of-the-art performance on presentation attack detection on several benchmark datasets.
Face anti-spoofing approaches based on domain generalization (DG) have drawn growing attention due to their robustness for unseen scenarios. Previous methods treat each sample from multiple domains indiscriminately during the training process, and endeavor to extract a common feature space to improve the generalization. However, due to complex and biased data distribution, directly treating them equally will corrupt the generalization ability. To settle the issue, we propose a novel Dual Reweighting Domain Generalization (DRDG) framework which iteratively reweights the relative importance between samples to further improve the generalization. Concretely, Sample Reweighting Module is first proposed to identify samples with relatively large domain bias, and reduce their impact on the overall optimization. Afterwards, Feature Reweighting Module is introduced to focus on these samples and extract more domain-irrelevant features via a self-distilling mechanism. Combined with the domain discriminator, the iteration of the two modules promotes the extraction of generalized features. Extensive experiments and visualizations are presented to demonstrate the effectiveness and interpretability of our method against the state-of-the-art competitors.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا