Do you want to publish a course? Click here

The winking eye of a hefty star. WR 21a revealed as a very massive eclipsing binary by TESS

216   0   0.0 ( 0 )
 Added by Rodolfo H. Barb\\'a
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

WR~21a was known as a massive spectroscopic binary composed of an O2.5If*/WN6ha primary and an O3V((f*))z secondary. Although a minimum value, the mass estimated for the primary placed it as one of the most massive stars found in our Galaxy. We report the discovery of photometric variations in the time series observations carried out by the Transiting Exoplanet Survey Satellite (TESS). These light variations are interpreted as formed by two main components: a sharp partial eclipse of the O3 by the O2.5/WN6 star, and tidally excited oscillations. Based on the light minima a new ephemeris for the system is calculated. The system configuration is detached and the observed eclipse corresponds to the periastron passage. During the eclipse, the light curve shape suggests the presence of the heartbeat effect. The frequencies derived for the tidally excited oscillations are harmonics of the orbital period. Combining new and previously published radial velocity measurements, a new spectroscopic orbital solution is also obtained. Using the PHOEBE code we model the TESS light curve and determine stellar radii of R_O2.5/WN6=23.3 Rsun and R_O3=14.8 Rsun, and an orbital inclination i=61.8+/-1.5 deg. The latter combined with the spectroscopic minimum masses lead to absolute masses of M_O2.5/WN6=94.4 Msun and M_O3=53.6 Msun, which establishes WR 21a as belonging to the rare group of the very massive stars.



rate research

Read More

From the radial velocities of the N IV 4058 and He II 4686 emission lines, and the N V 4604-20 absorption lines, determined in digital spectra, we report the discovery that the X-ray bright emission line star Wack 2134 (= WR 21a) is a spectroscopic binary system with an orbital period of $31.673pm0.002$ days. With this period, the N IV and He II emission and N V absorption lines, which originate in the atmosphere of the primary component, define a rather eccentric binary orbit (e=0.64$pm$0.03). The radial velocity variations of the N V absorptions have a lower amplitude than those of the He II emission. Such a behaviour of the emission line radial velocities could be due to distortions produced by a superimposed absorption component from the companion. High resolution echelle spectra observed during the quadrature phases of the binary show H and He II absorptions of both components with a radial velocity difference of about 541 km/s. From this difference, we infer quite high values of the minimum masses, of about 87Mo and 53Mo for the primary and secondary components, respectively, if the radial velocity variations of the He II emission represent the true orbit of the primary. No He I absorption lines are observed in our spectra. Thus, the secondary component in the Wack2134 binary system appears to be an early O type star. From the presence of H, He II and N V absorptions, and N IV and C IV emissions, in the spectrum of the primary component, it most clearly resembles those of Of/WNLha type stars.
73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within $Kepler$/$K2$ photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main-sequence and we compare our results for the $M/M_odot$ and $R/R_odot$ values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.
90 - A.-N. Chene 2015
Context The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results We confirm that the cluster VVV CL041 is a young (less than 4 Myrs) and massive (3 +/- 2 x 10^3 Msol) cluster, and not a simple asterism. It is located at a distance of 4.2 +/- 0.9 kpc, and its reddening is A_V = 8.0 +/- 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 Msol.
It has long been suspected that tidal forces in close binary stars could modify the orientation of the pulsation axis of the constituent stars. Such stars have been searched for, but until now never detected. Here we report the discovery of tidally trapped pulsations in the ellipsoidal variable HD 74423 in TESS space photometry data. The system contains a Delta Scuti pulsator in a 1.6-d orbit, whose pulsation mode amplitude is strongly modulated at the orbital frequency, which can be explained if the pulsations have a much larger amplitude in one hemisphere of the star. We interpret this as an obliquely pulsating distorted dipole oscillation with a pulsation axis aligned with the tidal axis. This is the first time that oblique pulsation along a tidal axis has been recognized. It is unclear whether the pulsations are trapped in the hemisphere directed towards the companion or in the side facing away from it, but future spectral measurements can provide the solution. In the meantime, the single-sided pulsator HD 74423 stands out as the prototype of a new class of obliquely pulsating stars in which the interactions of stellar pulsations and tidal distortion can be studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا