Do you want to publish a course? Click here

HII 2407: A Low-Mass Eclipsing Binary Revealed by K2 Observations of the Pleiades

86   0   0.0 ( 0 )
 Added by Trevor David
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within $Kepler$/$K2$ photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main-sequence and we compare our results for the $M/M_odot$ and $R/R_odot$ values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.



rate research

Read More

We report our long-term spectroscopic monitoring of the Pleiades member HII-2147, which has previously been spatially resolved at radio wavelengths in VLBI observations. It has also been claimed to be a (presumably short-period) double-lined spectroscopic binary with relatively sharp lines, although no orbit has ever been published. Examination of our new spectroscopic material, and of the historical radial velocities, shows that the current and previous spectra are best interpreted as showing only a single set of lines of a moderately rapidly rotating star with slowly variable radial velocity, which is one of the sources detected by VLBI. We combine our own and other velocities with the VLBI measurements and new adaptive optics observations to derive the first astrometric-spectroscopic orbit of the G5 + G9 pair, with a period of 18.18 $pm$ 0.11 years. We infer dynamical masses of 0.897 $pm$ 0.022 MSun for the spectroscopically visible star and 0.978 $pm$ 0.024 MSun for the other, along with a distance of 136.78 (+0.50/-0.46) pc. The lack of detection of the lines of the more massive component in our spectra can be adequately explained if it is rotating much more rapidly than the star we see. This is consistent with the observation that the lines of the secondary are shallower than expected for a star of its spectral type.
We present our new photometric and spectroscopic observations of NSVS 02500276, NSVS 07453183, NSVS 11868841, NSVS 06550671 and NSVS 10653195. The first flare-like event was detected on NSVS07453183. Using the Wilson-Devinney program, the preliminary orbital solutions and starspot parameters are derived. The chromospheric activity indicators show NSVS10653195 and NSVS06550671 are active. Then, we discuss the starspot evolution on the short and long term scale. In the end, we give our future plan.
Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their low luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052 Msun and M2=0.6511+/-0.0052 Msun and radii of R1=0.687^{+0.017}_{-0.024} Rsun and R2=0.672^{+0.018}_{-0.022} Rsun. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2) d. The distance to the system is estimated to be d=135.2^{+7.6}_{-7.9} pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the Mbol-log Teff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.
We have discovered a new, near-equal mass, eclipsing M dwarf binary from the Next Generation Transit Survey. This system is only one of 3 field age ($>$ 1 Gyr), late M dwarf eclipsing binaries known, and has a period of 1.74774 days, similar to that of CM~Dra and KOI126. Modelling of the eclipses and radial velocities shows that the component masses are $M_{rm pri}$=0.17391$^{+0.00153}_{0.00099}$ $M_{odot}$, $M_{rm sec}$=0.17418$^{+0.00193}_{-0.00059}$ $M_{odot}$; radii are $R_{rm pri}$=0.2045$^{+0.0038}_{-0.0058}$ $R_{odot}$, $R_{rm sec}$=0.2168$^{+0.0047}_{-0.0048}$ $R_{odot}$. The effective temperatures are $T_{rm pri} = 2995,^{+85}_{-105}$ K and $T_{rm sec} = 2997,^{+66}_{-101}$ K, consistent with M5 dwarfs and broadly consistent with main sequence models. This pair represents a valuable addition which can be used to constrain the mass-radius relation at the low mass end of the stellar sequence.
334 - Gregory A. Feiden 2015
Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a stars mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا