No Arabic abstract
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
Near infrared spectroscopy and photometry of the Wolf-Rayet Star WR 143 (HD 195177) were obtained in the $JHK$ photometric bands. High resolution spectra observed in the J and H bands exhibit narrow 1.083-micron He I line and the H I Pa Beta and the Brackett series lines in emission superposed on the broad emission line spectrum of the Wolf-Rayet star, giving strong indications of the presence of a companion. From the narrow emission lines observed, the companion is identified to be an early-type Be star. The photometric magnitudes exhibit variations in the JHK bands which are probably due to the variability of the companion star. The flux density distribution is too steep for a Wolf-Rayet atmosphere. This is identified to be mainly due to the increasing contribution from the early-type companion star towards shorter wavelengths.
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We aim to derive the atmospheric parameters of the 31 SB2s in the TMBM sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. 32 epochs of FLAMES/GIRAFFE spectra are analysed using spectral disentangling to construct the individual spectra of 62 components. We apply the CMFGEN atmosphere code to determine their stellar parameters and their He, C and N surface abundances. From these properties, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. Components filling their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are rejuvenated. Their locations in the N-vsini diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched and rapidly rotating non-enriched) that cannot be reproduced through single-star population synthesis. This sample is the largest sample of binaries to be studied in such a homogeneous way. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks.
We present high spatial resolution mid-infrared images of the nebula around the late-type carbon-rich Wolf-Rayet (WC)-OB binary system WR~112 taken by the recently upgraded VLT spectrometer and imager for the mid-infrared (VISIR) with the PAH1, NeII_2, and Q3 filters. The observations reveal a morphology resembling a series of arc-like filaments and broken shells. Dust temperatures and masses are derived for each of the identified filamentary structures, which exhibit temperatures ranging from $179_{-6}^{+8}$ K at the exterior W2 filament to $355_{-25}^{+37}$ K in the central 3. The total dust mass summed over the features is $2.6pm0.4times10^{-5}$ $mathrm{M}_odot$. A multi-epoch analysis of mid-IR photometry of WR~112 over the past $sim20$ yr reveals no significant variability in the observed dust temperature and mass. The morphology of the mid-IR dust emission from WR~112 also exhibits no significant expansion from imaging data taken in 2001, 2007, and 2016, which disputes the current interpretation of the nebula as a high expansion velocity ($sim1200$ km s$^{-1}$) pinwheel-shaped outflow driven by the central WC-OB colliding-wind binary. An upper limit of $lesssim120$ km s$^{-1}$ is derived for the expansion velocity assuming a distance of $4.15$ kpc. The upper limit on the average total mass-loss rate from the central 3 of WR~112 is estimated to be $lesssim8times10^{-6}$ $mathrm{M}_odot$ yr$^{-1}$. We leave its true nature as an open question, but propose that the WR~112 nebula may have formed in the outflow during a previous red or yellow supergiant phase of the central Wolf-Rayet star.
We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the most massive star known. While the primary is a known late type, H-rich Wolf-Rayet star (WN6h), the secondary could not be so far unambiguously detected. Using moderate resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary, and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1 sin^3 i ~ M2 sin^3 i ~ 13 +- 2 Msun, with q = M2 / M1 = 1.01 +- 0.07. An analysis of emission excess stemming from a wind-wind collision yields a similar inclination to that obtained from polarimetry (i = 39 +- 6deg). Our analysis thus implies M1 = 53^{+40}_{-20} and M2 = 54^{+40}_{-20} Msun, excluding M1 > 300Msun. A detailed comparison with evolution tracks calculated for single and binary stars, as well as the high eccentricity, suggest that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ~ 80 Msun and initial masses of Mi,1 ~ 105 and Mi,2 ~ 90Msun, consistent with the upper limits of our derived orbital masses, and would imply an age of ~2.2 Myr.