No Arabic abstract
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithms runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
A continual learning agent learns online with a non-stationary and never-ending stream of data. The key to such learning process is to overcome the catastrophic forgetting of previously seen data, which is a well known problem of neural networks. To prevent forgetting, a replay buffer is usually employed to store the previous data for the purpose of rehearsal. Previous works often depend on task boundary and i.i.d. assumptions to properly select samples for the replay buffer. In this work, we formulate sample selection as a constraint reduction problem based on the constrained optimization view of continual learning. The goal is to select a fixed subset of constraints that best approximate the feasible region defined by the original constraints. We show that it is equivalent to maximizing the diversity of samples in the replay buffer with parameters gradient as the feature. We further develop a greedy alternative that is cheap and efficient. The advantage of the proposed method is demonstrated by comparing to other alternatives under the continual learning setting. Further comparisons are made against state of the art methods that rely on task boundaries which show comparable or even better results for our method.
Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to estimate the performance of other policies. Based on this observation, we propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RANDOMIST), for regret minimization in PO, that employs a randomized exploration strategy, differently from the existing optimistic approaches. When the policy space is finite, we show that under certain circumstances, it is possible to achieve constant regret, while always enjoying logarithmic regret. We also derive problem-dependent regret lower bounds. Then, we extend RANDOMIST to compact policy spaces. Finally, we provide numerical simulations on finite and compact policy spaces, in comparison with PO and bandit baselines.
We study the online influence maximization problem in social networks under the independent cascade model. Specifically, we aim to learn the set of best influencers in a social network online while repeatedly interacting with it. We address the challenges of (i) combinatorial action space, since the number of feasible influencer sets grows exponentially with the maximum number of influencers, and (ii) limited feedback, since only the influenced portion of the network is observed. Under a stochastic semi-bandit feedback, we propose and analyze IMLinUCB, a computationally efficient UCB-based algorithm. Our bounds on the cumulative regret are polynomial in all quantities of interest, achieve near-optimal dependence on the number of interactions and reflect the topology of the network and the activation probabilities of its edges, thereby giving insights on the problem complexity. To the best of our knowledge, these are the first such results. Our experiments show that in several representative graph topologies, the regret of IMLinUCB scales as suggested by our upper bounds. IMLinUCB permits linear generalization and thus is both statistically and computationally suitable for large-scale problems. Our experiments also show that IMLinUCB with linear generalization can lead to low regret in real-world online influence maximization.
In this paper, we study Contextual Unsupervised Sequential Selection (USS), a new variant of the stochastic contextual bandits problem where the loss of an arm cannot be inferred from the observed feedback. In our setup, arms are associated with fixed costs and are ordered, forming a cascade. In each round, a context is presented, and the learner selects the arms sequentially till some depth. The total cost incurred by stopping at an arm is the sum of fixed costs of arms selected and the stochastic loss associated with the arm. The learners goal is to learn a decision rule that maps contexts to arms with the goal of minimizing the total expected loss. The problem is challenging as we are faced with an unsupervised setting as the total loss cannot be estimated. Clearly, learning is feasible only if the optimal arm can be inferred (explicitly or implicitly) from the problem structure. We observe that learning is still possible when the problem instance satisfies the so-called Contextual Weak Dominance (CWD) property. Under CWD, we propose an algorithm for the contextual USS problem and demonstrate that it has sub-linear regret. Experiments on synthetic and real datasets validate our algorithm.
A dataset is a shred of crucial evidence to describe a task. However, each data point in the dataset does not have the same potential, as some of the data points can be more representative or informative than others. This unequal importance among the data points may have a large impact in rehearsal-based continual learning, where we store a subset of the training examples (coreset) to be replayed later to alleviate catastrophic forgetting. In continual learning, the quality of the samples stored in the coreset directly affects the models effectiveness and efficiency. The coreset selection problem becomes even more important under realistic settings, such as imbalanced continual learning or noisy data scenarios. To tackle this problem, we propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration and trains them in an online manner. Our proposed method maximizes the models adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting. We validate the effectiveness of our coreset selection mechanism over various standard, imbalanced, and noisy datasets against strong continual learning baselines, demonstrating that it improves task adaptation and prevents catastrophic forgetting in a sample-efficient manner.