Do you want to publish a course? Click here

Online Algorithm for Unsupervised Sequential Selection with Contextual Information

87   0   0.0 ( 0 )
 Added by Arun Verma
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we study Contextual Unsupervised Sequential Selection (USS), a new variant of the stochastic contextual bandits problem where the loss of an arm cannot be inferred from the observed feedback. In our setup, arms are associated with fixed costs and are ordered, forming a cascade. In each round, a context is presented, and the learner selects the arms sequentially till some depth. The total cost incurred by stopping at an arm is the sum of fixed costs of arms selected and the stochastic loss associated with the arm. The learners goal is to learn a decision rule that maps contexts to arms with the goal of minimizing the total expected loss. The problem is challenging as we are faced with an unsupervised setting as the total loss cannot be estimated. Clearly, learning is feasible only if the optimal arm can be inferred (explicitly or implicitly) from the problem structure. We observe that learning is still possible when the problem instance satisfies the so-called Contextual Weak Dominance (CWD) property. Under CWD, we propose an algorithm for the contextual USS problem and demonstrate that it has sub-linear regret. Experiments on synthetic and real datasets validate our algorithm.



rate research

Read More

Thompson Sampling has generated significant interest due to its better empirical performance than upper confidence bound based algorithms. In this paper, we study Thompson Sampling based algorithm for Unsupervised Sequential Selection (USS) problem. The USS problem is a variant of the stochastic multi-armed bandits problem, where the loss of an arm can not be inferred from the observed feedback. In the USS setup, arms are associated with fixed costs and are ordered, forming a cascade. In each round, the learner selects an arm and observes the feedback from arms up to the selected arm. The learners goal is to find the arm that minimizes the expected total loss. The total loss is the sum of the cost incurred for selecting the arm and the stochastic loss associated with the selected arm. The problem is challenging because, without knowing the mean loss, one cannot compute the total loss for the selected arm. Clearly, learning is feasible only if the optimal arm can be inferred from the problem structure. As shown in the prior work, learning is possible when the problem instance satisfies the so-called `Weak Dominance (WD) property. Under WD, we show that our Thompson Sampling based algorithm for the USS problem achieves near optimal regret and has better numerical performance than existing algorithms.
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where in every round a decision maker offers a subset (assortment) of products to a consumer, and observes their response. Consumers purchase products so as to maximize their utility. We assume that the products are described by a set of attributes and the mean utility of a product is linear in the values of these attributes. We model consumer choice behavior by means of the widely used Multinomial Logit (MNL) model, and consider the decision makers problem of dynamically learning the model parameters, while optimizing cumulative revenue over the selling horizon $T$. Though this problem has attracted considerable attention in recent times, many existing methods often involve solving an intractable non-convex optimization problem and their theoretical performance guarantees depend on a problem dependent parameter which could be prohibitively large. In particular, existing algorithms for this problem have regret bounded by $O(sqrt{kappa d T})$, where $kappa$ is a problem dependent constant that can have exponential dependency on the number of attributes. In this paper, we propose an optimistic algorithm and show that the regret is bounded by $O(sqrt{dT} + kappa)$, significantly improving the performance over existing methods. Further, we propose a convex relaxation of the optimization step which allows for tractable decision-making while retaining the favourable regret guarantee.
Deep reinforcement learning has achieved impressive successes yet often requires a very large amount of interaction data. This result is perhaps unsurprising, as using complicated function approximation often requires more data to fit, and early theoretical results on linear Markov decision processes provide regret bounds that scale with the dimension of the linear approximation. Ideally, we would like to automatically identify the minimal dimension of the approximation that is sufficient to encode an optimal policy. Towards this end, we consider the problem of model selection in RL with function approximation, given a set of candidate RL algorithms with known regret guarantees. The learners goal is to adapt to the complexity of the optimal algorithm without knowing it textit{a priori}. We present a meta-algorithm that successively rejects increasingly complex models using a simple statistical test. Given at least one candidate that satisfies realizability, we prove the meta-algorithm adapts to the optimal complexity with $tilde{O}(L^{5/6} T^{2/3})$ regret compared to the optimal candidates $tilde{O}(sqrt T)$ regret, where $T$ is the number of episodes and $L$ is the number of algorithms. The dimension and horizon dependencies remain optimal with respect to the best candidate, and our meta-algorithmic approach is flexible to incorporate multiple candidate algorithms and models. Finally, we show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds that depend on the gaps between the maximal values attainable by the candidates.
We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The mistake bounds we prove are of the form $tilde{O}(D/gamma^2)$. The term $1/gamma^2$ is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying $m times n$ matrix into $P Q^intercal$ where the rows of $P$ are interpreted as classifiers in $mathcal{R}^d$ and the rows of $Q$ as instances in $mathcal{R}^d$, then $gamma$ is the maximum (normalized) margin over all factorizations $P Q^intercal$ consistent with the observed matrix. The quasi-dimension term $D$ measures the quality of side information. In the presence of vacuous side information, $D= m+n$. However, if the side information is predictive of the underlying factorization of the matrix, then in an ideal case, $D in O(k + ell)$ where $k$ is the number of distinct row factors and $ell$ is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, we provide an example where the side information is not directly specified in advance. For this example, the quasi-dimension $D$ is now bounded by $O(k^2 + ell^2)$.
In medical diagnosis, physicians predict the state of a patient by checking measurements (features) obtained from a sequence of tests, e.g., blood test, urine test, followed by invasive tests. As tests are often costly, one would like to obtain only those features (tests) that can establish the presence or absence of the state conclusively. Another aspect of medical diagnosis is that we are often faced with unsupervised prediction tasks as the true state of the patients may not be known. Motivated by such medical diagnosis problems, we consider a {it Cost-Sensitive Medical Diagnosis} (CSMD) problem, where the true state of patients is unknown. We formulate the CSMD problem as a feature selection problem where each test gives a feature that can be used in a prediction model. Our objective is to learn strategies for selecting the features that give the best trade-off between accuracy and costs. We exploit the `Weak Dominance property of problem to develop online algorithms that identify a set of features which provides an `optimal trade-off between cost and accuracy of prediction without requiring to know the true state of the medical condition. Our empirical results validate the performance of our algorithms on problem instances generated from real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا