Do you want to publish a course? Click here

Variational Disentanglement for Domain Generalization

132   0   0.0 ( 0 )
 Added by Yufei Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Domain generalization aims to learn an invariant model that can generalize well to the unseen target domain. In this paper, we propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN), which is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data. We further show the rationale of our proposed method by proving that our proposed framework is equivalent to minimize the evidence upper bound of the divergence between the distribution of task-specific features and its invariant ground truth derived from variational inference. We conduct extensive experiments to verify our method on three benchmarks, and both quantitative and qualitative results illustrate the effectiveness of our method.

rate research

Read More

176 - Zheng Ding , Yifan Xu , Weijian Xu 2020
We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the latent encoding/embedding in VAE without changing its main backbone architecture, hence retaining the desirable properties of the VAE. We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE. In the unsupervised strategy, we guide the VAE learning by introducing a lightweight decoder that learns latent geometric transformation and principal components; in the supervised strategy, we use an adversarial excitation and inhibition mechanism to encourage the disentanglement of the latent variables. Guided-VAE enjoys its transparency and simplicity for the general representation learning task, as well as disentanglement learning. On a number of experiments for representation learning, improved synthesis/sampling, better disentanglement for classification, and reduced classification errors in meta-learning have been observed.
Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specific features, which means the domain-invariant features are not discriminative. The reconstructed features are also not sufficiently used during training. In this paper, we propose a novel enhanced separable disentanglement (ESD) model. We first employ a disentangler to distill domain-invariant and domain-specific features. Then, we apply feature separation enhancement processes to minimize contamination between domain-invariant and domain-specific features. Finally, our model reconstructs complete feature vectors, which are used for further disentanglement during the training phase. Extensive experiments from three benchmark datasets outperform state-of-the-art methods, especially on challenging cross-domain tasks.
We address the task of domain generalization, where the goal is to train a predictive model such that it is able to generalize to a new, previously unseen domain. We choose a hierarchical generative approach within the framework of variational autoencoders and propose a domain-unsupervised algorithm that is able to generalize to new domains without domain supervision. We show that our method is able to learn representations that disentangle domain-specific information from class-label specific information even in complex settings where domain structure is not observed during training. Our interpretable method outperforms previously proposed generative algorithms for domain generalization as well as other non-generative state-of-the-art approaches in several hierarchical domain settings including sequential overlapped near continuous domain shift. It also achieves competitive performance on the standard domain generalization benchmark dataset PACS compared to state-of-the-art approaches which rely on observing domain-specific information during training, as well as another domain unsupervised method. Additionally, we proposed model selection purely based on Evidence Lower Bound (ELBO) and also proposed weak domain supervision where implicit domain information can be added into the algorithm.
309 - Aming Wu , Rui Liu , Yahong Han 2021
To improve the generalization of detectors, for domain adaptive object detection (DAOD), recent advances mainly explore aligning feature-level distributions between the source and single-target domain, which may neglect the impact of domain-specific information existing in the aligned features. Towards DAOD, it is important to extract domain-invariant object representations. To this end, in this paper, we try to disentangle domain-invariant representations from domain-specific representations. And we propose a novel disentangled method based on vector decomposition. Firstly, an extractor is devised to separate domain-invariant representations from the input, which are used for extracting object proposals. Secondly, domain-specific representations are introduced as the differences between the input and domain-invariant representations. Through the difference operation, the gap between the domain-specific and domain-invariant representations is enlarged, which promotes domain-invariant representations to contain more domain-irrelevant information. In the experiment, we separately evaluate our method on the single- and compound-target case. For the single-target case, experimental results of four domain-shift scenes show our method obtains a significant performance gain over baseline methods. Moreover, for the compound-target case (i.e., the target is a compound of two different domains without domain labels), our method outperforms baseline methods by around 4%, which demonstrates the effectiveness of our method.
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which however are usually costly or unavailable. While unlabeled data are far more accessible, we seek to explore how unsupervised learning can help deep models generalizes across domains. Specifically, we study a novel generalization problem called unsupervised domain generalization, which aims to learn generalizable models with unlabeled data. Furthermore, we propose a Domain-Irrelevant Unsupervised Learning (DIUL) method to cope with the significant and misleading heterogeneity within unlabeled data and severe distribution shifts between source and target data. Surprisingly we observe that DIUL can not only counterbalance the scarcity of labeled data but also further strengthen the generalization ability of models when the labeled data are sufficient. As a pretraining approach, DIUL shows superior to ImageNet pretraining protocol even when the available data are unlabeled and of a greatly smaller amount compared to ImageNet. Extensive experiments clearly demonstrate the effectiveness of our method compared with state-of-the-art unsupervised learning counterparts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا