No Arabic abstract
To improve the generalization of detectors, for domain adaptive object detection (DAOD), recent advances mainly explore aligning feature-level distributions between the source and single-target domain, which may neglect the impact of domain-specific information existing in the aligned features. Towards DAOD, it is important to extract domain-invariant object representations. To this end, in this paper, we try to disentangle domain-invariant representations from domain-specific representations. And we propose a novel disentangled method based on vector decomposition. Firstly, an extractor is devised to separate domain-invariant representations from the input, which are used for extracting object proposals. Secondly, domain-specific representations are introduced as the differences between the input and domain-invariant representations. Through the difference operation, the gap between the domain-specific and domain-invariant representations is enlarged, which promotes domain-invariant representations to contain more domain-irrelevant information. In the experiment, we separately evaluate our method on the single- and compound-target case. For the single-target case, experimental results of four domain-shift scenes show our method obtains a significant performance gain over baseline methods. Moreover, for the compound-target case (i.e., the target is a compound of two different domains without domain labels), our method outperforms baseline methods by around 4%, which demonstrates the effectiveness of our method.
Most state-of-the-art methods of object detection suffer from poor generalization ability when the training and test data are from different domains, e.g., with different styles. To address this problem, previous methods mainly use holistic representations to align feature-level and pixel-level distributions of different domains, which may neglect the instance-level characteristics of objects in images. Besides, when transferring detection ability across different domains, it is important to obtain the instance-level features that are domain-invariant, instead of the styles that are domain-specific. Therefore, in order to extract instance-invariant features, we should disentangle the domain-invariant features from the domain-specific features. To this end, a progressive disentangled framework is first proposed to solve domain adaptive object detection. Particularly, base on disentangled learning used for feature decomposition, we devise two disentangled layers to decompose domain-invariant and domain-specific features. And the instance-invariant features are extracted based on the domain-invariant features. Finally, to enhance the disentanglement, a three-stage training mechanism including multiple loss functions is devised to optimize our model. In the experiment, we verify the effectiveness of our method on three domain-shift scenes. Our method is separately 2.3%, 3.6%, and 4.0% higher than the baseline method cite{saito2019strong}.
Recent deep learning methods for object detection rely on a large amount of bounding box annotations. Collecting these annotations is laborious and costly, yet supervised models do not generalize well when testing on images from a different distribution. Domain adaptation provides a solution by adapting existing labels to the target testing data. However, a large gap between domains could make adaptation a challenging task, which leads to unstable training processes and sub-optimal results. In this paper, we propose to bridge the domain gap with an intermediate domain and progressively solve easier adaptation subtasks. This intermediate domain is constructed by translating the source images to mimic the ones in the target domain. To tackle the domain-shift problem, we adopt adversarial learning to align distributions at the feature level. In addition, a weighted task loss is applied to deal with unbalanced image quality in the intermediate domain. Experimental results show that our method performs favorably against the state-of-the-art method in terms of the performance on the target domain.
Domain generalization aims to learn an invariant model that can generalize well to the unseen target domain. In this paper, we propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN), which is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data. We further show the rationale of our proposed method by proving that our proposed framework is equivalent to minimize the evidence upper bound of the divergence between the distribution of task-specific features and its invariant ground truth derived from variational inference. We conduct extensive experiments to verify our method on three benchmarks, and both quantitative and qualitative results illustrate the effectiveness of our method.
Domain adaptation methods face performance degradation in object detection, as the complexity of tasks require more about the transferability of the model. We propose a new perspective on how CNN models gain the transferability, viewing the weights of a model as a series of motion patterns. The directions of weights, and the gradients, can be divided into domain-specific and domain-invariant parts, and the goal of domain adaptation is to concentrate on the domain-invariant direction while eliminating the disturbance from domain-specific one. Current UDA object detection methods view the two directions as a whole while optimizing, which will cause domain-invariant direction mismatch even if the output features are perfectly aligned. In this paper, we propose the domain-specific suppression, an exemplary and generalizable constraint to the original convolution gradients in backpropagation to detach the two parts of directions and suppress the domain-specific one. We further validate our theoretical analysis and methods on several domain adaptive object detection tasks, including weather, camera configuration, and synthetic to real-world adaptation. Our experiment results show significant advance over the state-of-the-art methods in the UDA object detection field, performing a promotion of $10.2sim12.2%$ mAP on all these domain adaptation scenarios.
To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labeled data are sampled from a single source domain, which ignores a more generalized scenario, where labeled data are from multiple source domains. For the more challenging task, we propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN), which can simultaneously enhance domain invariance and preserve discriminative power. Specifically, the framework contains multiple source subnets and a pseudo target subnet. First, we propose a hierarchical feature alignment strategy to conduct strong and weak alignments for low- and high-level features, respectively, considering their different effects for object detection. Second, we develop a novel pseudo subnet learning algorithm to approximate optimal parameters of pseudo target subset by weighted combination of parameters in different source subnets. Finally, a consistency regularization for region proposal network is proposed to facilitate each subnet to learn more abstract invariances. Extensive experiments on different adaptation scenarios demonstrate the effectiveness of the proposed model.