Do you want to publish a course? Click here

Hierarchical Variational Auto-Encoding for Unsupervised Domain Generalization

168   0   0.0 ( 0 )
 Added by Xudong Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We address the task of domain generalization, where the goal is to train a predictive model such that it is able to generalize to a new, previously unseen domain. We choose a hierarchical generative approach within the framework of variational autoencoders and propose a domain-unsupervised algorithm that is able to generalize to new domains without domain supervision. We show that our method is able to learn representations that disentangle domain-specific information from class-label specific information even in complex settings where domain structure is not observed during training. Our interpretable method outperforms previously proposed generative algorithms for domain generalization as well as other non-generative state-of-the-art approaches in several hierarchical domain settings including sequential overlapped near continuous domain shift. It also achieves competitive performance on the standard domain generalization benchmark dataset PACS compared to state-of-the-art approaches which rely on observing domain-specific information during training, as well as another domain unsupervised method. Additionally, we proposed model selection purely based on Evidence Lower Bound (ELBO) and also proposed weak domain supervision where implicit domain information can be added into the algorithm.



rate research

Read More

Unsupervised learning can leverage large-scale data sources without the need for annotations. In this context, deep learning-based auto encoders have shown great potential in detecting anomalies in medical images. However, state-of-the-art anomaly scores are still based on the reconstruction error, which lacks in two essential parts: it ignores the model-internal representation employed for reconstruction, and it lacks formal assertions and comparability between samples. We address these shortcomings by proposing the Context-encoding Variational Autoencoder (ceVAE) which combines reconstruction- with density-based anomaly scoring. This improves the sample- as well as pixel-wise results. In our experiments on the BraTS-2017 and ISLES-2015 segmentation benchmarks, the ceVAE achieves unsupervised ROC-AUCs of 0.95 and 0.89, respectively, thus outperforming state-of-the-art methods by a considerable margin.
Domain adaptation is an important technique to alleviate performance degradation caused by domain shift, e.g., when training and test data come from different domains. Most existing deep adaptation methods focus on reducing domain shift by matching marginal feature distributions through deep transformations on the input features, due to the unavailability of target domain labels. We show that domain shift may still exist via label distribution shift at the classifier, thus deteriorating model performances. To alleviate this issue, we propose an approximate joint distribution matching scheme by exploiting prediction uncertainty. Specifically, we use a Bayesian neural network to quantify prediction uncertainty of a classifier. By imposing distribution matching on both features and labels (via uncertainty), label distribution mismatching in source and target data is effectively alleviated, encouraging the classifier to produce consistent predictions across domains. We also propose a few techniques to improve our method by adaptively reweighting domain adaptation loss to achieve nontrivial distribution matching and stable training. Comparisons with state of the art unsupervised domain adaptation methods on three popular benchmark datasets demonstrate the superiority of our approach, especially on the effectiveness of alleviating negative transfer.
The assumption that training and testing samples are generated from the same distribution does not always hold for real-world machine-learning applications. The procedure of tackling this discrepancy between the training (source) and testing (target) domains is known as domain adaptation. We propose an unsupervised version of domain adaptation that considers the presence of only unlabelled data in the target domain. Our approach centers on finding correspondences between samples of each domain. The correspondences are obtained by treating the source and target samples as graphs and using a convex criterion to match them. The criteria used are first-order and second-order similarities between the graphs as well as a class-based regularization. We have also developed a computationally efficient routine for the convex optimization, thus allowing the proposed method to be used widely. To verify the effectiveness of the proposed method, computer simulations were conducted on synthetic, image classification and sentiment classification datasets. Results validated that the proposed local sample-to-sample matching method out-performs traditional moment-matching methods and is competitive with respect to current local domain-adaptation methods.
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution discrepancy across different domains. Due to the fact that all the domain alignment approaches can only reduce, but not remove the domain shift. Target domain samples distributed near the edge of the clusters, or far from their corresponding class centers are easily to be misclassified by the hyperplane learned from the source domain. To alleviate this issue, we propose to joint domain alignment and discriminative feature learning, which could benefit both domain alignment and final classification. Specifically, an instance-based discriminative feature learning method and a center-based discriminative feature learning method are proposed, both of which guarantee the domain invariant features with better intra-class compactness and inter-class separability. Extensive experiments show that learning the discriminative features in the shared feature space can significantly boost the performance of deep domain adaptation methods.
We would like to learn latent representations that are low-dimensional and highly interpretable. A model that has these characteristics is the Gaussian Process Latent Variable Model. The benefits and negative of the GP-LVM are complementary to the Variational Autoencoder, the former provides interpretable low-dimensional latent representations while the latter is able to handle large amounts of data and can use non-Gaussian likelihoods. Our inspiration for this paper is to marry these two approaches and reap the benefits of both. In order to do so we will introduce a novel approximate inference scheme inspired by the GP-LVM and the VAE. We show experimentally that the approximation allows the capacity of the generative bottle-neck (Z) of the VAE to be arbitrarily large without losing a highly interpretable representation, allowing reconstruction quality to be unlimited by Z at the same time as a low-dimensional space can be used to perform ancestral sampling from as well as a means to reason about the embedded data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا