Do you want to publish a course? Click here

On the rank of Hankel matrices over finite fields

167   0   0.0 ( 0 )
 Added by Darij Grinberg
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Given three nonnegative integers $p,q,r$ and a finite field $F$, how many Hankel matrices $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ over $F$ have rank $leq r$ ? This question is classical, and the answer ($q^{2r}$ when $rleqminleft{ p,qright} $) has been obtained independently by various authors using different tools (Daykin, Elkies, Garcia Armas, Ghorpade and Ram). In this note, we study a refinement of this result: We show that if we fix the first $k$ of the entries $x_{0},x_{1},ldots,x_{k-1}$ for some $kleq rleqminleft{ p,qright} $, then the number of ways to choose the remaining $p+q-k+1$ entries $x_{k},x_{k+1},ldots,x_{p+q}$ such that the resulting Hankel matrix $left( x_{i+j}right) _{0leq ileq p, 0leq jleq q}$ has rank $leq r$ is $q^{2r-k}$. This is exactly the answer that one would expect if the first $k$ entries had no effect on the rank, but of course the situation is not this simple. The refined result generalizes (and provides an alternative proof of) a result by Anzis, Chen, Gao, Kim, Li and Patrias on evaluations of Jacobi-Trudi determinants over finite fields.

rate research

Read More

We establish an uncertainty principle for functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ with constant support (where $p mid q-1$). In particular, we show that for any constant $S > 0$, functions $f: mathbb{Z}/p rightarrow mathbb{F}_q$ for which $|text{supp}; {f}| = S$ must satisfy $|text{supp}; hat{f}| = (1 - o(1))p$. The proof relies on an application of Szemeredis theorem; the celebrated improvements by Gowers translate into slightly stronger statements permitting conclusions for functions possessing slowly growing support as a function of $p$.
Given $E subseteq mathbb{F}_q^d times mathbb{F}_q^d$, with the finite field $mathbb{F}_q$ of order $q$ and the integer $d ge 2$, we define the two-parameter distance set as $Delta_{d, d}(E)=left{left(|x_1-y_1|, |x_2-y_2|right) : (x_1,x_2), (y_1,y_2) in E right}$. Birklbauer and Iosevich (2017) proved that if $|E| gg q^{frac{3d+1}{2}}$, then $ |Delta_{d, d}(E)| = q^2$. For the case of $d=2$, they showed that if $|E| gg q^{frac{10}{3}}$, then $ |Delta_{2, 2}(E)| gg q^2$. In this paper, we present extensions and improvements of these results.
141 - Chengfei Xie , Gennian Ge 2021
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.
102 - Zhaoyang Wu , Zhi-Wei Sun 2006
For an integer $n>2$, a rank-$n$ matroid is called an $n$-spike if it consists of $n$ three-point lines through a common point such that, for all $kin{1, 2, ..., n - 1}$, the union of every set of $k$ of these lines has rank $k+1$. Spikes are very special and important in matroid theory. In 2003 Wu found the exact numbers of $n$-spikes over fields with 2, 3, 4, 5, 7 elements, and the asymptotic values for larger finite fields. In this paper, we prove that, for each prime number $p$, a $GF(p$) representable $n$-spike $M$ is only representable on fields with characteristic $p$ provided that $n ge 2p-1$. Moreover, $M$ is uniquely representable over $GF(p)$.
120 - Guo-Niu Han 2019
The Euler numbers occur in the Taylor expansion of $tan(x)+sec(x)$. Since Stieltjes, continued fractions and Hankel determinants of the even Euler numbers, on the one hand, of the odd Euler numbers, on the other hand, have been widely studied separately. However, no Hankel determinants of the (mixed) Euler numbers have been obtained and explicitly calculated. The reason for that is that some Hankel determinants of the Euler numbers are null. This implies that the Jacobi continued fraction of the Euler numbers does not exist. In the present paper, this obstacle is bypassed by using the Hankel continued fraction, instead of the $J$-fraction. Consequently, an explicit formula for the Hankel determinants of the Euler numbers is being derived, as well as a full list of Hankel continued fractions and Hankel determinants involving Euler numbers. Finally, a new $q$-analog of the Euler numbers $E_n(q)$ based on our continued fraction is proposed. We obtain an explicit formula for $E_n(-1)$ and prove a conjecture by R. J. Mathar on these numbers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا