Do you want to publish a course? Click here

Biomedical Event Extraction with Hierarchical Knowledge Graphs

89   0   0.0 ( 0 )
 Added by Kung-Hsiang Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Biomedical event extraction is critical in understanding biomolecular interactions described in scientific corpus. One of the main challenges is to identify nested structured events that are associated with non-indicative trigger words. We propose to incorporate domain knowledge from Unified Medical Language System (UMLS) to a pre-trained language model via Graph Edge-conditioned Attention Networks (GEANet) and hierarchical graph representation. To better recognize the trigger words, each sentence is first grounded to a sentence graph based on a jointly modeled hierarchical knowledge graph from UMLS. The grounded graphs are then propagated by GEANet, a novel graph neural networks for enhanced capabilities in inferring complex events. On BioNLP 2011 GENIA Event Extraction task, our approach achieved 1.41% F1 and 3.19% F1 improvements on all events and complex events, respectively. Ablation studies confirm the importance of GEANet and hierarchical KG.



rate research

Read More

395 - Jiaju Lin , Jin Jian , Qin Chen 2021
Eliciting knowledge contained in language models via prompt-based learning has shown great potential in many natural language processing tasks, such as text classification and generation. Whereas, the applications for more complex tasks such as event extraction are less studied, since the design of prompt is not straightforward due to the complicated types and arguments. In this paper, we explore to elicit the knowledge from pre-trained language models for event trigger detection and argument extraction. Specifically, we present various joint trigger/argument prompt methods, which can elicit more complementary knowledge by modeling the interactions between different triggers or arguments. The experimental results on the benchmark dataset, namely ACE2005, show the great advantages of our proposed approach. In particular, our approach is superior to the recent advanced methods in the few-shot scenario where only a few samples are used for training.
Incorporating factual knowledge into pre-trained language models (PLM) such as BERT is an emerging trend in recent NLP studies. However, most of the existing methods combine the external knowledge integration module with a modified pre-training loss and re-implement the pre-training process on the large-scale corpus. Re-pretraining these models is usually resource-consuming, and difficult to adapt to another domain with a different knowledge graph (KG). Besides, those works either cannot embed knowledge context dynamically according to textual context or struggle with the knowledge ambiguity issue. In this paper, we propose a novel knowledge-aware language model framework based on fine-tuning process, which equips PLM with a unified knowledge-enhanced text graph that contains both text and multi-relational sub-graphs extracted from KG. We design a hierarchical relational-graph-based message passing mechanism, which can allow the representations of injected KG and text to mutually update each other and can dynamically select ambiguous mentioned entities that share the same text. Our empirical results show that our model can efficiently incorporate world knowledge from KGs into existing language models such as BERT, and achieve significant improvement on the machine reading comprehension (MRC) task compared with other knowledge-enhanced models.
Joint event and causality extraction is a challenging yet essential task in information retrieval and data mining. Recently, pre-trained language models (e.g., BERT) yield state-of-the-art results and dominate in a variety of NLP tasks. However, these models are incapable of imposing external knowledge in domain-specific extraction. Considering the prior knowledge of frequent n-grams that represent cause/effect events may benefit both event and causality extraction, in this paper, we propose convolutional knowledge infusion for frequent n-grams with different windows of length within a joint extraction framework. Knowledge infusion during convolutional filter initialization not only helps the model capture both intra-event (i.e., features in an event cluster) and inter-event (i.e., associations across event clusters) features but also boosts training convergence. Experimental results on the benchmark datasets show that our model significantly outperforms the strong BERT+CSNN baseline.
Event extraction is a classic task in natural language processing with wide use in handling large amount of yet rapidly growing financial, legal, medical, and government documents which often contain multiple events with their elements scattered and mixed across the documents, making the problem much more difficult. Though the underlying relations between event elements to be extracted provide helpful contextual information, they are somehow overlooked in prior studies. We showcase the enhancement to this task brought by utilizing the knowledge graph that captures entity relations and their attributes. We propose a first event extraction framework that embeds a knowledge graph through a Graph Neural Network and integrates the embedding with regular features, all at document-level. Specifically, for extracting events from Chinese financial announcements, our method outperforms the state-of-the-art method by 5.3% in F1-score.
Infusing factual knowledge into pre-trained models is fundamental for many knowledge-intensive tasks. In this paper, we proposed Mixture-of-Partitions (MoP), an infusion approach that can handle a very large knowledge graph (KG) by partitioning it into smaller sub-graphs and infusing their specific knowledge into various BERT models using lightweight adapters. To leverage the overall factual knowledge for a target task, these sub-graph adapters are further fine-tuned along with the underlying BERT through a mixture layer. We evaluate our MoP with three biomedical BERTs (SciBERT, BioBERT, PubmedBERT) on six downstream tasks (inc. NLI, QA, Classification), and the results show that our MoP consistently enhances the underlying BERTs in task performance, and achieves new SOTA performances on five evaluated datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا