Do you want to publish a course? Click here

Length Regulation Drives Self-Organization in Filament-Motor Mixtures

298   0   0.0 ( 0 )
 Added by Fridtjof Brauns
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.



rate research

Read More

Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
182 - Amir Shee , Subhadip Ghosh , 2020
We consider the dynamics of a rigid filament in a motor protein assay under external loading. The motor proteins are modeled as active harmonic linkers with tail ends immobilized on a substrate. Their heads attach to the filament stochastically to extend along it, resulting in a force on the filament, before detaching. The rate of extension and detachment are load dependent. Here we formulate and characterize the governing dynamics in the mean field approximation using linear stability analysis, and direct numerical simulations of the motor proteins and filament. Under constant loading, the system shows transition from a stable configuration to instability towards detachment of the filament from motor proteins. Under elastic loading, we find emergence of stable limit cycle oscillations via a supercritical Hopf bifurcation with change in activity and the number of motor proteins. Numerical simulations of the system for large number of motor proteins show good agreement with the mean field predictions.
Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body (FB) formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Peclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus take advantage of a self-driven non-equilibrium phase transition that can be controlled at the single cell level.
Crosslinks and molecular motors play an important role in the organization of cytoskeletal filament networks. Here we incorporate the effect of crosslinks into our model of polar motor-filament organization [Phys. Rev. E {bf 71}, 050901 (2005)], through suppressing the relative sliding of filaments in the course of motor-mediated alignment. We show that this modification leads to a nontrivial macroscopic behavior, namely the oriented state exhibits a transverse instability in contrast to the isotropic instability that occurs without crosslinks. This transverse instability leads to the formation of dense extended bundles of oriented filaments, similar to recently observed structures in actomyosin. This model also can be applied to situations with two oppositely directed motor species or motors with different processing speeds.
In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to the microtubule tip(s) by diffusion or directed walk and, then, depolymerize the microtubule from the tip(s) after accumulating there. We develop a quantitative model to study the depolymerizing action of such a generic motor protein, and its possible effects on the length distribution of microtubules. We show that, when the motor protein concentration in solution exceeds a critical value, a steady state is reached where the length distribution is, in general, non-monotonic with a single peak. However, for highly processive motors and large motor densities, this distribution effectively becomes an exponential decay. Our findings suggest that such motor proteins may be selectively used by the cell to ensure precise control of MT lengths. The model is also used to analyze experimental observations of motor-induced depolymerization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا