No Arabic abstract
Crosslinks and molecular motors play an important role in the organization of cytoskeletal filament networks. Here we incorporate the effect of crosslinks into our model of polar motor-filament organization [Phys. Rev. E {bf 71}, 050901 (2005)], through suppressing the relative sliding of filaments in the course of motor-mediated alignment. We show that this modification leads to a nontrivial macroscopic behavior, namely the oriented state exhibits a transverse instability in contrast to the isotropic instability that occurs without crosslinks. This transverse instability leads to the formation of dense extended bundles of oriented filaments, similar to recently observed structures in actomyosin. This model also can be applied to situations with two oppositely directed motor species or motors with different processing speeds.
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
Cell polarization underlies many cellular processes, such as differentiation, migration, and budding. Many living cells, such as budding yeast and fission yeast, use cytoskeletal structures to actively transport proteins to one location on the membrane and create a high density spot of membrane-bound proteins. Yet, the thermodynamic constraints on filament-based cell polarization remain unknown. We show by mathematical modeling that cell polarization requires detailed balance to be broken, and we quantify the free-energy cost of maintaining a polarized state of the cell. Our study reveals that detailed balance cannot only be broken via the active transport of proteins along filaments, but also via a chemical modification cycle, allowing detailed balance to be broken by the shuttling of proteins between the filament, membrane, and cytosol. Our model thus shows that cell polarization can be established via two distinct driving mechanisms, one based on active transport and one based on non-equilibrium binding. Furthermore, the model predicts that the driven binding process dissipates orders of magnitude less free-energy than the transport-based process to create the same membrane spot. Active transport along filaments may be sufficient to create a polarized distribution of membrane-bound proteins, but an additional chemical modification cycle of the proteins themselves is more efficient and less sensitive to the physical exclusion of proteins on the transporting filaments, providing insight in the design principles of the Pom1/Tea1/Tea4 system in fission yeast and the Cdc42 system in budding yeast.
Generation of mechanical oscillation is ubiquitous to wide variety of intracellular processes. We show that catchbonding behaviour of motor proteins provides a generic mechanism of generating spontaneous oscillations in motor-cytoskeletal filament complexes. We obtain the phase diagram to characterize how this novel catch bond mediated mechanism can give rise to bistability and sustained limit cycle oscillations and results in very distinctive stability behaviour, including bistable and non-linearly stabilised in motor-microtubule complexes in biologically relevant regimes. Hitherto, it was thought that the primary functional role of the biological catchbond was to improve surface adhesion of bacteria and cell when subjected to external forces or flow field. Instead our theoretical study shows that the imprint of this catch bond mediated physical mechanism would have ramifications for whole gamut of intracellular processes ranging from oscillations in mitotic spindle oscillations to activity in muscle fibres.
Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo Non-equilibrium chromosome looping via molecular slip-links, Physical Review Letters 119, 138101 (2017)
We investigate the effective interaction between two randomly charged but otherwise net-neutral, planar dielectric slabs immersed in an asymmetric Coulomb fluid containing a mixture of mobile monovalent and multivalent ions. The presence of charge disorder on the apposed bounding surfaces of the slabs leads to substantial qualitative changes in the way they interact, as compared with the standard picture provided by the van der Waals and image-induced, ion-depletion interactions. While, the latter predict purely attractive interactions between strictly neutral slabs, we show that the combined effects from surface charge disorder, image depletion, Debye (or salt) screening and also, in particular, their coupling with multivalent ions, give rise to a more diverse behavior for the effective interaction between net-neutral slabs. Disorder effects show large variation depending on the properly quantified strength of disorder, leading either to non-monotonic effective interaction with both repulsive and attractive branches when the surface charges are weakly disordered (small disorder variance) or to a dominating attractive interaction that is larger both in its range and magnitude than what is predicted from the van der Waals and image-induced, ion-depletion interactions, when the surfaces are strongly disordered (large disorder variance).