Do you want to publish a course? Click here

Beam splitter geometry for Iron-Pnictide materials

78   0   0.0 ( 0 )
 Added by Abhisek Bag
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a Cooper pair beam splitter for Iron-Pnictide $S_{+-}$ superconductor and calculate the entangled electron-hole current. We investigate the interplay of various physical parameters such as doping at electron and hole pockets as well as non-zero nesting between the electron and hole pocket. In general we find that the presence of magnetic ordering decreases the beam splitter current by a factor of one hundred in comparison to pure BCS superconductor in two dimensions. For equal size electron-hole pocket and zero nesting we find that the beam-splitter current in general depends non-monotonically on the chemical potentials at electron and hole pockets. For non-zero nesting at a fixed chemical potential the current also varies non-monotonically with nesting vector $|bf q|$. This non-monotonous or oscillatory behavior is attributed to inter-dependency of density of states at hole and electron pocket due to coupling between the electron and hole pockets. Our finding can be useful in experimental determinations or verification of co-existence phase in Iron-Pnictide superconductors and has potential applications in realizing quantum gates or switches.



rate research

Read More

Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional electron and hole cylinders in the paramagnetic overdoped members of the pnictide family to significantly smaller three-dimensional Fermi surface sections in the antiferromagnetic parent members, via a potential quantum critical point at which an effective mass enhancement is observed. Similarities with the Fermi surface evolution from the overdoped to the underdoped normal state of the cuprate superconducting family are discussed, along with the enhancement in antiferromagnetic correlations in both these classes of materials, and the potential implications for superconductivity.
385 - Z. Deng , X. C. Wang , Q.Q. Liu 2009
A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arsenic. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.
Iron-based superconductivity develops near an antiferromagnetic order and out of a bad metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, and neutron scattering to demonstrate that NaFe$_{1-x}$Cu$_x$As near $xapprox 0.5$ exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behavior persisting above the Neel temperature, indicative of a Mott insulator. Upon decreasing $x$ from $0.5$, the antiferromagnetic ordered moment continuously decreases, yielding to superconductivity around $x=0.05$. Our discovery of a Mott insulating state in NaFe$_{1-x}$Cu$_x$As thus makes it the only known Fe-based material in which superconductivity can be smoothly connected to the Mott insulating state, highlighting the important role of electron correlations in the high-$T_{rm c}$ superconductivity.
155 - K. Mydeen , E. Lengyel , Z. Deng 2010
Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.
134 - C. S. Liu , W.C. Wu 2011
Based on a two-band model, we study the electronic Raman scattering intensity in both normal and superconducting states of iron-pnictide superconductors. For the normal state, due to the match or mismatch of the symmetries between band hybridization and Raman vertex, it is predicted that overall $B_{1g}$ Raman intensity should be much weaker than that of the $B_{2g}$ channel. Moreover, in the non-resonant regime, there should exhibit a interband excitation peak at frequency $omegasimeq 7.3 t_1 (6.8t_1)$ in the $B_{1g}$ ($B_{2g}$) channel. For the superconducting state, it is shown that $beta$-band contributes most to the $B_{2g}$ Raman intensity as a result of multiple effects of Raman vertex, gap symmetry, and Fermi surface topology. Both extended $s$- and $d_{xy}$-wave pairings in the unfolded BZ can give a good description to the reported $B_{2g}$ Raman data [Muschler {em et al.}, Phys. Rev. B. {bf 80}, 180510 (2009).], while $d_{x^2-y^2}$-wave pairing in the unfolded BZ seems to be ruled out.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا