Do you want to publish a course? Click here

Spectral density of individual trajectories of an active Brownian particle

259   0   0.0 ( 0 )
 Added by Alessio Squarcini
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study analytically the single-trajectory spectral density (STSD) of an active Brownian motion as exhibited, for example, by the dynamics of a chemically-active Janus colloid. We evaluate the standardly-defined spectral density, i.e. the STSD averaged over a statistical ensemble of trajectories in the limit of an infinitely long observation time $T$, and also go beyond the standard analysis by considering the coefficient of variation $gamma$ of the distribution of the STSD. Moreover, we analyse the finite-$T$ behaviour of the STSD and $gamma$, determine the cross-correlations between spatial components of the STSD, and address the effects of translational diffusion on the functional forms of spectral densities. The exact expressions that we obtain unveil many distinctive features of active Brownian motion compared to its passive counterpart, which allow to distinguish between these two classes based solely on the spectral content of individual trajectories.



rate research

Read More

We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homogeneous phases the diffusive properties and effective temperature are also homogeneous. Instead, in the inhomogeneous phases (close to equilibrium and within the MIPS sector) the particles can be separated in two groups with different diffusion properties and effective temperatures. Notably, at fixed activity strength the effective temperatures in the two phases remain distinct and approximately constant within the MIPS region, with values corresponding to the ones of the whole system at the boundaries of this sector of the phase diagram. We complement the study of the globally averaged properties with the theoretical and numerical characterization of the fluctuation distributions of the single particle diffusion, linear response, and effective temperature in the homogeneous and inhomogeneous phases. We also distinguish the behavior of the (time-delayed) effective temperature from the (instantaneous) kinetic temperature, showing that the former is independent on the friction coefficient.
We consider an active Brownian particle in a $d$-dimensional harmonic trap, in the presence of translational diffusion. While the Fokker-Planck equation can not in general be solved to obtain a closed form solution of the joint distribution of positions and orientations, as we show, it can be utilized to evaluate the exact time dependence of all moments, using a Laplace transform approach. We present explicit calculation of several such moments at arbitrary times and their evolution to the steady state. In particular we compute the kurtosis of the displacement, a quantity which clearly shows the difference of the active steady state properties from the equilibrium Gaussian form. We find that it increases with activity to asymptotic saturation, but varies non-monotonically with the trap-stiffness, thereby capturing a recently observed active- to- passive re-entrant behavior.
As a result of nonequilibrium forces, purely repulsive self-propelled particles undergo macrophase separation between a dense and a dilute phase. We present a thorough study of the ordering kinetics of such motility-induced phase separation (MIPS) in active Brownian particles in two dimensions, and we show that it is generically accompanied by microphase separation. The growth of the dense phase follows a law akin to the one of liquid-gas phase separation. However, it is made of a mosaic of hexatic microdomains whose size does not coarsen indefinitely, leaving behind a network of extended topological defects from which microscopic dilute bubbles arise. The characteristic length of these finite-size structures increases with activity, independently of the choice of initial conditions.
Microorganisms such as bacteria are active matters which consume chemical energy and generate their unique run-and-tumble motion. A swarm of such microorganisms provide a nonequilibrium active environment whose noise characteristics are different from those of thermal equilibrium reservoirs. One important difference is a finite persistence time, which is considerably large compared to that of the equilibrium noise, that is, the active noise is colored. Here, we study a mesoscopic energy-harvesting device (engine) with active reservoirs harnessing this noise nature. For a simple linear model, we analytically show that the engine efficiency can surpass the conventional Carnot bound, thus the power-efficiency tradeoff constraint is released, and the efficiency at the maximum power can overcome the Curzon-Ahlborn efficiency. We find that the supremacy of the active engine critically depends on the time-scale symmetry of two active reservoirs.
The equilibrium properties of a system of passive diffusing particles in an external magnetic field are unaffected by the Lorentz force. In contrast, active Brownian particles exhibit steady-state phenomena that depend on both the strength and the polarity of the applied magnetic field. The intriguing effects of the Lorentz force, however, can only be observed when out-of-equilibrium density gradients are maintained in the system. To this end, we use the method of stochastic resetting on active Brownian particles in two dimensions by resetting them to the line $x=0$ at a constant rate and periodicity in the $y$ direction. Under stochastic resetting, an active system settles into a nontrivial stationary state which is characterized by an inhomogeneous density distribution, polarization and bulk fluxes perpendicular to the density gradients. We show that whereas for a uniform magnetic field the properties of the stationary state of the active system can be obtained from its passive counterpart, novel features emerge in the case of an inhomogeneous magnetic field which have no counterpart in passive systems. In particular, there exists an activity-dependent threshold rate such that for smaller resetting rates, the density distribution of active particles becomes non-monotonic. We also study the mean first-passage time to the $x$ axis and find a surprising result: it takes an active particle more time to reach the target from any given point for the case when the magnetic field increases away from the axis. The theoretical predictions are validated using Brownian dynamics simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا