Do you want to publish a course? Click here

An efficient iterative method for solving parameter-dependent and random diffusion problems

301   0   0.0 ( 0 )
 Added by Xiaobing Feng Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more general and unified framework. The main idea of the framework is to reformulate the underlying problem into another problem with a parameter-independent diffusion coefficient and a parameter-dependent (and solution-dependent) right-hand side, a fixed-point iteration is then employed to compute the solution of the reformulated problem. The main benefit of the proposed approach is that an efficient direct solver and a block Krylov subspace iterative solver can be used at each iteration, allowing to reuse the $LU$ matrix factorization or to do an efficient matrix-matrix multiplication for all parameters, which in turn results in significant computation saving. Convergence and rates of convergence are established for the iterative method both at the variational continuous level and at the finite element discrete level under some structure conditions. Several strategies for establishing reformulations of parameter-dependent and random diffusion problems are proposed and their computational complexity is analyzed. Several 1-D and 2-D numerical experiments are also provided to demonstrate the efficiency of the proposed iterative method and to validate the theoretical convergence results.



rate research

Read More

87 - Ziqing Xie , Rui Zhang , Bo Wang 2019
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely outgoing wave decomposition for the scattering field outside the enclosed region. As a result, the original multiple scattering problem can be decomposed into a finite number of single scattering problems, where each of them communicates with the other scattering problems only through its surrounding artificial boundary. Accordingly, they can be solved in a parallel manner at each iteration. This framework enjoys a great flexibility in using different combinations of iterative algorithms and single scattering problem solvers. The spectral element method seamlessly integrated with the non-reflecting boundary condition and the GMRES iteration is advocated and implemented in this work. The convergence of the proposed method is proved by using the compactness of involved integral operators. Ample numerical examples are presented to show its high accuracy and efficiency.
A novel orthogonalization-free method together with two specific algorithms are proposed to solve extreme eigenvalue problems. On top of gradient-based algorithms, the proposed algorithms modify the multi-column gradient such that earlier columns are decoupled from later ones. Global convergence to eigenvectors instead of eigenspace is guaranteed almost surely. Locally, algorithms converge linearly with convergence rate depending on eigengaps. Momentum acceleration, exact linesearch, and column locking are incorporated to further accelerate both algorithms and reduce their computational costs. We demonstrate the efficiency of both algorithms on several random matrices with different spectrum distribution and matrices from computational chemistry.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.
96 - Yuye Feng , Qingbiao Wu 2020
This paper introduces and analyzes a preconditioned modified of the Hermitian and skew-Hermitian splitting (PMHSS). The large sparse continuous Sylvester equations are solved by PMHSS iterative algorithm based on nonHermitian, complex, positive definite/semidefinite, and symmetric matrices. We prove that the PMHSS is converged under suitable conditions. In addition, we propose an accelerated PMHSS method consisting of two preconditioned matrices and two iteration parameters {alpha}, b{eta}. Theoretical analysis showed that the convergence speed of the accelerated PMHSS is faster compared to the PMHSS. Also, the robustness and efficiency of the proposed two iterative algorithms were demonstrated in numerical experiments.
This paper focuses on proposing a deep learning initialized iterative method (Int-Deep) for low-dimensional nonlinear partial differential equations (PDEs). The corresponding framework consists of two phases. In the first phase, an expectation minimization problem formulated from a given nonlinear PDE is approximately resolved with mesh-free deep neural networks to parametrize the solution space. In the second phase, a solution ansatz of the finite element method to solve the given PDE is obtained from the approximate solution in the first phase, and the ansatz can serve as a good initial guess such that Newtons method for solving the nonlinear PDE is able to converge to the ground truth solution with high-accuracy quickly. Systematic theoretical analysis is provided to justify the Int-Deep framework for several classes of problems. Numerical results show that the Int-Deep outperforms existing purely deep learning-based methods or traditional iterative methods (e.g., Newtons method and the Picard iteration method).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا