Do you want to publish a course? Click here

Principal Agent Problem as a Principled Approach to Electronic Counter-Countermeasures in Radar

70   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Electronic countermeasures (ECM) against a radar are actions taken by an adversarial jammer to mitigate effective utilization of the electromagnetic spectrum by the radar. On the other hand, electronic counter-countermeasures (ECCM) are actions taken by the radar to mitigate the impact of electronic countermeasures (ECM) so that the radar can continue to operate effectively. The main idea of this paper is to show that ECCM involving a radar and a jammer can be formulated as a principal-agent problem (PAP) - a problem widely studied in microeconomics. With the radar as the principal and the jammer as the agent, we design a PAP to optimize the radars ECCM strategy in the presence of a jammer. The radar seeks to optimally trade-off signal-to-noise ratio (SNR) of the target measurement with the measurement cost: cost for generating radiation power for the pulse to probe the target. We show that for a suitable choice of utility functions, PAP is a convex optimization problem. Further, we analyze the structure of the PAP and provide sufficient conditions under which the optimal solution is an increasing function of the jamming power observed by the radar; this enables computation of the radars optimal ECCM within the class of increasing affine functions at a low computation cost. Finally, we illustrate the PAP formulation of the radars ECCM problem via numerical simulations. We also use simulations to study a radars ECCM problem wherein the radar and the jammer have mismatched information.



rate research

Read More

We prove an existence result for the principal-agent problem with adverse selection under general assumptions on preferences and allocation spaces. Instead of assuming that the allocation space is finite-dimensional or compact, we consider a more general coercivity condition which takes into account the principals cost and the agents preferences. Our existence proof is simple and flexible enough to adapt to partial participation models as well as to the case of type-dependent budget constraints.
88 - Xihao He , Xiaolu Tan , Jun Zou 2021
We study a principal-agent problem with one principal and multiple agents. The principal provides an exit contract which is identical to all agents, then each agent chooses her/his optimal exit time with the given contract. The principal looks for an optimal contract in order to maximize her/his reward value which depends on the agents choices. Under a technical monotone condition, and by using Bank-El Karouis representation of stochastic process, we are able to decouple the two optimization problems, and to reformulate the principals problem into an optimal control problem. The latter is also equivalent to an optimal multiple stopping problem and the existence of the optimal contract is obtained. We then show that the continuous time problem can be approximated by a sequence of discrete time ones, which would induce a natural numerical approximation method. We finally discuss the principal-agent problem if one restricts to the class of all Markovian and/or continuous contracts.
This paper considers the design of tunable decision schemes capable of rejecting with high probability mismatched signals embedded in Gaussian interference with unknown covariance matrix. To this end, a sparse recovery technique is exploited to enhance the resolution at which the target angle of arrival is estimated with the objective to obtain high-selective detectors. The outcomes of this estimation procedure are used to devise detection architectures relying on either the twostage design paradigm or heuristic design procedures based upon the generalized likelihood ratio test. Remarkably, the new decision rules exhibit a bounded-constant false alarm rate property and allow for a tradeoff between the matched detection performance and the rejection of undesired signals by tuning a design parameter. At the analysis stage, the performance of the newly proposed detectors is assessed also in comparison with existing selective competitors. The results show that the new detectors can outperform the considered counterparts in terms of rejection of unwanted signals, while retaining reasonable detection performance of matched signals.
The landscape of web APIs is evolving to meet new client requirements and to facilitate how providers fulfill them. A recent web API model is GraphQL, which is both a query language and a runtime. Using GraphQL, client queries express the data they want to retrieve or mutate, and servers respond with exactly those data or changes. GraphQLs expressiveness is risky for service providers because clients can succinctly request stupendous amounts of data, and responding to overly complex queries can be costly or disrupt service availability. Recent empirical work has shown that many service providers are at risk. Using traditional API management methods is not sufficient, and practitioners lack principled means of estimating and measuring the cost of the GraphQL queries they receive. In this work, we present a linear-time GraphQL query analysis that can measure the cost of a query without executing it. Our approach can be applied in a separate API management layer and used with arbitrary GraphQL backends. In contrast to existing static approaches, our analysis supports common GraphQL conventions that affect query cost, and our analysis is provably correct based on our formal specification of GraphQL semantics. We demonstrate the potential of our approach using a novel GraphQL query-response corpus for two commercial GraphQL APIs. Our query analysis consistently obtains upper cost bounds, tight enough relative to the true response sizes to be actionable for service providers. In contrast, existing static GraphQL query analyses exhibit over-estimates and under-estimates because they fail to support GraphQL conventions.
152 - Liang Liu , Shuowen Zhang 2020
Recently, integrating the communication and sensing functions into a common network has attracted a great amount of attention. This paper considers the advanced signal processing techniques for enabling the radar to sense the environment via the communication signals. Since the technologies of orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) are widely used in the legacy cellular systems, this paper proposes a two-stage signal processing approach for radar sensing in an MIMO-OFDM system, where the scattered channels caused by various targets are estimated in the first stage, and the location information of the targets is then extracted from their scattered channels in the second stage. Specifically, based on the observations that radar sensing is similar to multi-path communication in the sense that different targets scatter the signal sent by the radar transmitter to the radar receiver with various delay, and that the number of scatters is limited, we show that the OFDM-based channel training approach together with the compressed sensing technique can be utilized to estimate the scattered channels efficiently in Stage I. Moreover, to tackle the challenge arising from range resolution for sensing the location of closely spaced targets, we show that the MIMO radar technique can be leveraged in Stage II such that the radar has sufficient spatial samples to even detect the targets in close proximity based on their scattered channels. Last, numerical examples are provided to show the effectiveness of our proposed sensing approach which merely relies on the existing MIMO-OFDM communication techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا