Do you want to publish a course? Click here

Transmission Electron Microscopy Study of the Morphology of Ices Composed of H2O, CO2, and CO on Refractory Grains

62   0   0.0 ( 0 )
 Added by Masashi Tsuge
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been implicitly assumed that ices on grains in molecular clouds and proto planetary disks are formed by homogeneous layers regardless of their composition or crystallinity. To verify this assumption, we observed the H2O deposition onto refractory substrates and the crystallization of amorphous ices (H2O, CO2, and CO) using an ultra-high-vacuum transmission electron microscope. In the H2O-deposition experiments, we found that three-dimensional islands of crystalline ice (Ic) were formed at temperatures above 130 K. The crystallization experiments showed that uniform thin films of amorphous CO and H2O became three-dimensional islands of polyhedral crystals; amorphous CO2, on the other hand, became a thin film of nano crystalline CO2 covering the amorphous H2O. Our observations show that crystal morphologies strongly depend not only on the ice composition, but also on the substrate. Using experimental data concerning the crystallinity of deposited ices and the crystallization timescale of amorphous ices, we illustrated the criteria for ice crystallinity in space and outlined the macroscopic morphology of icy grains in molecular clouds as follows: amorphous H2O covered the refractory grain uniformly, CO2 nano-crystals were embedded in the amorphous H2O, and a polyhedral CO crystal was attached to the amorphous H2O. Furthermore, a change in the grain morphology in a proto-planetary disk is shown. These results have important implications for the chemical evolution of molecules, non-thermal desorption, collision of icy grains, and sintering.

rate research

Read More

We report isotopic and microstructural data on five presolar hibonite grains identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope. Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red-giant/asymptotic-giant branches, whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain stacking faults and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage, if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl12O19. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480 K to 1743 K, assuming a corresponding total gas pressure between 1 x 10-3 and 1 x 10-6 atm. The TEM data were used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme 18O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti-enriched compared to grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.
We present 0.8 to 2.4 micron spectral observations of uranian satellites, obtained at IRTF/SpeX on 17 nights during 2001-2005. The spectra reveal for the first time the presence of CO2 ice on the surfaces of Umbriel and Titania, by means of 3 narrow absorption bands near 2 microns. Several additional, weaker CO2 ice absorptions have also been detected. No CO2 absorption is seen in Oberon spectra, and the strengths of the CO2 ice bands decline with planetocentric distance from Ariel through Titania. We use the CO2 absorptions to map the longitudinal distribution of CO2 ice on Ariel, Umbriel, and Titania, showing that it is most abundant on their trailing hemispheres. We also examine H2O ice absorptions in the spectra, finding deeper H2O bands on the leading hemispheres of Ariel, Umbriel, and Titania, but the opposite pattern on Oberon. Potential mechanisms to produce the observed longitudinal and planetocentric distributions of the two ices are considered.
We propose a classification of exoplanet atmospheres based on their H, C, O, N element abundances below about 600 K. Chemical equilibrium models were run for all combinations of H, C, N, O abundances, and three types of solutions were found, which are robust against variations of temperature, pressure and nitrogen abundance. Type A atmospheres contain H2O, CH4, NH3 and either H2 or N2, but only traces of CO2 and O2. Type B atmospheres contain O2, H2O, CO2 and N2, but only traces of CH4, NH3 and H2. Type C atmospheres contain H2O, CO2, CH4 and N2, but only traces of NH3, H2 and O2. Other molecules are only present in ppb or ppm concentrations in chemical equilibrium, depending on temperature. Type C atmospheres are not found in the solar system, where atmospheres are generally cold enough for water to condense, but exoplanets may well host such atmospheres. Our models show that graphite (soot) clouds can occur in type C atmospheres in addition to water clouds, which can occur in all types of atmospheres. Full equilibrium condensation models show that the outgassing from warm rock can naturally provide type C atmospheres. We conclude that type C atmospheres, if they exist, would lead to false positive detections of biosignatures in exoplanets when considering the coexistence of CH4 and CO2, and suggest other, more robust non-equilibrium markers.
We present the first results of AKARI Infrared Camera near-infrared spec- troscopic survey of the Large Magellanic Cloud (LMC). We detected absorption features of the H2O ice 3.05 um and the CO2 ice 4.27 um stretching mode toward seven massive young stellar objects (YSOs). These samples are for the first time spectroscopically confirmed to be YSOs. We used a curve-of-growth method to evaluate the column densities of the ices and derived the CO2/H2O ratio to be 0.45 pm 0.17. This is clearly higher than that seen in Galactic massive YSOs (0.17 pm 0.03). We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC may be responsible for the observed high CO2 ice abundance.
Diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO$_2$ ice at low temperatures (T=11--23~K) using CO$_2$ longitudinal optical (LO) phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Ficks second law and find the temperature dependent diffusion coefficients are well fit by an Arrhenius equation giving a diffusion barrier of 300 $pm$ 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO$_2$ along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO$_2$ ices deposited at 11-50 K by temperature-programmed desorption (TPD) and find that the desorption barrier ranges from 1240 $pm$ 90 K to 1410 $pm$ 70 K depending on the CO$_2$ deposition temperature and resultant ice porosity. The measured CO-CO$_2$ desorption barriers demonstrate that CO binds equally well to CO$_2$ and H$_2$O ices when both are compact. The CO-CO$_2$ diffusion-desorption barrier ratio ranges from 0.21-0.24 dependent on the binding environment during diffusion. The diffusion-desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا