No Arabic abstract
We use the Cluster-EAGLE (C-EAGLE) hydrodynamical simulations to investigate the effects of self-interacting dark matter (SIDM) on galaxies as they fall into clusters. We find that SIDM galaxies follow similar orbits to their Cold Dark Matter (CDM) counterparts, but end up with ${sim}$25 per cent less mass by the present day. One in three SIDM galaxies are entirely disrupted, compared to one in five CDM galaxies. However, the excess stripping will be harder to observe than suggested by previous DM-only simulations because the most stripped galaxies form cores and also lose stars: the most discriminating objects become unobservable. The best test will be to measure the stellar-to-halo mass relation (SHMR) for galaxies with stellar mass $10^{10-11},mathrm{M}_{odot}$. This is 8 times higher in a cluster than in the field for a CDM universe, but 13 times higher for an SIDM universe. Given intrinsic scatter in the SHMR, these models could be distinguished with noise-free galaxy-galaxy strong lensing of ${sim}32$ cluster galaxies.
Dark matter self interactions can leave distinctive signatures on the properties of satellite galaxies around Milky Way--like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We delineate the regions of self-interacting dark matter parameter space---specified by interaction cross section and a velocity scale---where each of these effects dominates, and show how the relative mass loss depends on the satellites initial mass, density profile and orbit. We obtain novel, conservative constraints in this parameter space using Milky Way satellite galaxies with notably high central densities and small pericenter distances. Our results for self-interacting dark matter models, in combination with constraints from clusters of galaxies, favor velocity-dependent cross sections that lead to gravothermal core collapse in the densest satellites.
The abundance, distribution and inner structure of satellites of galaxy clusters can be sensitive probes of the properties of dark matter. We run 30 cosmological zoom-in simulations with self-interacting dark matter (SIDM), with a velocity-dependent cross-section, to study the properties of subhalos within cluster-mass hosts. We find that the abundance of subhalos that survive in the SIDM simulations are suppressed relative to their cold dark matter (CDM) counterparts. Once the population of disrupted subhalos -- which may host orphan galaxies -- are taken into account, satellite galaxy populations in CDM and SIDM models can be reconciled. However, even in this case, the inner structure of subhalos are significantly different in the two dark matter models. We study the feasibility of using the weak lensing signal from the subhalo density profiles to distinguish between the cold and self-interacting dark matter while accounting for the potential contribution of orphan galaxies. We find that the effects of self-interactions on the density profile of subhalos can appear degenerate with subhalo disruption in CDM, when orphans are accounted for. With current error bars from the Subaru Hyper Suprime-Cam Strategic Program, we find that subhalos in the outskirts of clusters (where disruption is less prevalent) can be used to constrain dark matter physics. In the future, the Vera C. Rubin Observatory Legacy Survey of Space and Time will give precise measurements of the weak lensing profile and can be used to constrain $sigma_T/m$ at the $sim 1$ cm$^2$ g$^{-1}$ level at $vsim 2000$ km s$^{-1}$.
The formation and evolution of galaxies is known to be sensitive to tidal processes leading to intrinsic correlations between their shapes and orientations. Such correlations can be measured to high significance today, suggesting that cosmological information can be extracted from them. Among the most pressing questions in particle physics and cosmology is the nature of dark matter. If dark matter is self-interacting, it can leave an imprint on galaxy shapes. In this work, we investigate whether self-interactions can produce a long-lasting imprint on intrinsic galaxy shape correlations. We investigate this observable at low redshift ($z<0.4$) using a state-of-the-art suite of cosmological hydro-dynamical simulations where the dark matter model is varied. We find that dark matter self-interactions induce a mass dependent suppression in the intrinsic alignment signal by up to 50% out to tens of mega-parsecs, showing that self-interactions can impact structure outside the very core of clusters. We find evidence that self-interactions have a scale-dependent impact on the intrinsic alignment signal that is sufficiently different from signatures introduced by differing baryonic physics prescriptions, suggesting that it is detectable with up-coming all-sky surveys.
We probe the self-interactions of dark matter using observational data of relaxed galaxy groups and clusters. Our analysis uses the Jeans formalism and considers a wider range of systematic effects than in previous work, including adiabatic contraction and stellar anisotropy, to robustly constrain the self-interaction cross section. For both groups and clusters, our results show a mild preference for a nonzero cross section compared with cold collisionless dark matter. Our groups result, $sigma/m=0.5pm0.2~mathrm{cm}^2/mathrm{g}$, places the first constraint on self-interacting dark matter (SIDM) at an intermediate scale between galaxies and massive clusters. Our clusters result is $sigma/m=0.19pm0.09~mathrm{cm}^2/mathrm{g}$, with an upper limit of $sigma / m < 0.35~mathrm{cm}^2/mathrm{g}$ (95% CL). Thus, our results disfavor a velocity-independent cross section of order $1~mathrm{cm}^2/mathrm{g}$ or larger needed to address small scale structure problems in galaxies, but are consistent with a velocity-dependent cross section that decreases with increasing scattering velocity. Comparing the cross sections with and without the effect of adiabatic contraction, we find that adiabatic contraction produces slightly larger values for our data sample, but they are consistent at the $1sigma$ level. Finally, to validate our approach, we apply our Jeans analysis to a sample of mock data generated from SIDM-plus-baryons simulations with $sigma/m = 1~mathrm{cm}^2/mathrm{g}$. This is the first test of the Jeans model at the level of stellar and lensing observables directly measured from simulations. We find our analysis gives a robust determination of the cross section, as well as consistently inferring the true baryon and dark matter density profiles.
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentally explored to determine the strength of the self scatterings. Models with self interactions have similarities to warm dark matter, as they lead to suppression of power on small scales when the dark-matter velocity dispersion is sizable. Nonetheless, both the physical origin and the extent of the suppression differ for self-interacting dark matter from conventional warm dark matter, with a dark sound horizon controlling the reduction of power in the former case, and a free-streaming length in the latter. We thoroughly analyze these differences by performing computations of the linear power spectrum using a newly developed Boltzmann code. We find that while current Lyman-$alpha$ data disfavor conventional warm dark matter with a mass less than 5.3 keV, when self interactions are included at their maximal value consistent with bounds from the Bullet Cluster, the limits are relaxed to 4.4 keV. Finally, we make use of our analysis to set novel bounds on light scalar singlet dark matter.