Do you want to publish a course? Click here

Velocity-dependent Self-interacting Dark Matter from Groups and Clusters of Galaxies

94   0   0.0 ( 0 )
 Added by Brian Colquhoun
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We probe the self-interactions of dark matter using observational data of relaxed galaxy groups and clusters. Our analysis uses the Jeans formalism and considers a wider range of systematic effects than in previous work, including adiabatic contraction and stellar anisotropy, to robustly constrain the self-interaction cross section. For both groups and clusters, our results show a mild preference for a nonzero cross section compared with cold collisionless dark matter. Our groups result, $sigma/m=0.5pm0.2~mathrm{cm}^2/mathrm{g}$, places the first constraint on self-interacting dark matter (SIDM) at an intermediate scale between galaxies and massive clusters. Our clusters result is $sigma/m=0.19pm0.09~mathrm{cm}^2/mathrm{g}$, with an upper limit of $sigma / m < 0.35~mathrm{cm}^2/mathrm{g}$ (95% CL). Thus, our results disfavor a velocity-independent cross section of order $1~mathrm{cm}^2/mathrm{g}$ or larger needed to address small scale structure problems in galaxies, but are consistent with a velocity-dependent cross section that decreases with increasing scattering velocity. Comparing the cross sections with and without the effect of adiabatic contraction, we find that adiabatic contraction produces slightly larger values for our data sample, but they are consistent at the $1sigma$ level. Finally, to validate our approach, we apply our Jeans analysis to a sample of mock data generated from SIDM-plus-baryons simulations with $sigma/m = 1~mathrm{cm}^2/mathrm{g}$. This is the first test of the Jeans model at the level of stellar and lensing observables directly measured from simulations. We find our analysis gives a robust determination of the cross section, as well as consistently inferring the true baryon and dark matter density profiles.

rate research

Read More

We explore the phenomenology of having a second epoch of dark matter annihilation into dark radiation long after the standard thermal freeze-out. Such a hidden reannihilation process could affect visible sectors only gravitationally. As a concrete realization we consider self-interacting dark matter (SIDM) with a light force mediator coupled to dark radiation. We demonstrate how resonantly Sommerfeld enhanced cross sections emerge to induce the reannihilation epoch. The effect is a temporally local modification of the Hubble expansion rate and we show that the Cosmic Microwave Background (CMB) measurements -- as well as other observations -- have a high sensitivity to observe this phenomenon. Special attention is given to the model region where late kinetic decoupling and strong self-interactions can alleviate several small-scale problems in the cold dark matter paradigm at the same time. Interestingly, we find that reannihilation might here also simultaneously lower the tension between CMB and low-redshift astronomical observations of $H_{0}$ and $sigma_{8}$. Moreover, we identify reannihilation as a clear signature to discriminate between the phenomenologically otherwise almost identical vector and scalar mediator realizations of SIDM.
We investigate cosmological implications of an energy density contribution arising by elastic dark matter self-interactions. Its scaling behaviour shows that it can be the dominant energy contribution in the early universe. Constraints from primordial nucleosynthesis give an upper limit on the self-interaction strength which allows for the same strength as standard model strong interactions. Furthermore we explore the cosmological consequences of an early self-interaction dominated universe. Chemical dark matter decoupling requires that self-interacting dark matter particles are rather light (keV range) but we find that super-weak inelastic interactions are predicted by strong elastic dark matter self-interactions. Assuming a second, collisionless cold dark matter component, its natural decoupling scale exceeds the weak scale and is in accord with the electron and positron excess observed by PAMELA and Fermi-LAT. Structure formation analysis reveals a linear growing solution during self-interaction domination, enhancing structures up to ~ 10^(-3) solar masses long before the formation of the first stars.
We study the evolution of cosmological perturbations in dark-matter models with elastic and velocity-independent self interactions. Such interactions are imprinted in the matter-power spectrum as dark acoustic oscillations, which can be experimentally explored to determine the strength of the self scatterings. Models with self interactions have similarities to warm dark matter, as they lead to suppression of power on small scales when the dark-matter velocity dispersion is sizable. Nonetheless, both the physical origin and the extent of the suppression differ for self-interacting dark matter from conventional warm dark matter, with a dark sound horizon controlling the reduction of power in the former case, and a free-streaming length in the latter. We thoroughly analyze these differences by performing computations of the linear power spectrum using a newly developed Boltzmann code. We find that while current Lyman-$alpha$ data disfavor conventional warm dark matter with a mass less than 5.3 keV, when self interactions are included at their maximal value consistent with bounds from the Bullet Cluster, the limits are relaxed to 4.4 keV. Finally, we make use of our analysis to set novel bounds on light scalar singlet dark matter.
We consider a cosmological scenario where the dark sector is described by two perfect fluids that interact through a velocity-dependent coupling. This coupling gives rise to an interaction in the dark sector driven by the relative velocity of the components, thus making the background evolution oblivious to the interaction and only the perturbed Euler equations are affected at first order. We obtain the equations governing this system with the Schutz-Sorkin Lagrangian formulation for perfect fluids and derive the corresponding stability conditions to avoid ghosts and Laplacian instabilities. As a particular example, we study a model where dark energy behaves as a radiation fluid at high redshift while it effectively becomes a cosmological constant in the late Universe. Within this scenario, we show that the interaction of both dark components leads to a suppression of the dark matter clustering at late times. We also argue the possibility that this suppression of clustering together with the additional dark radiation at early times can simultaneously alleviate the $sigma_8$ and $H_0$ tensions.
We use the latest measurements of the Milky Way satellite population from the Dark Energy Survey and Pan-STARRS1 to infer the most stringent astrophysical bound to date on velocity-dependent interactions between dark matter particles and protons. We model the momentum-transfer cross section as a power law of the relative particle velocity $v$ with a free normalizing amplitude, $sigma_text{MT}=sigma_0 v^n$, to broadly capture the interactions arising within the non-relativistic effective theory of dark matter-proton scattering. The scattering leads to a momentum and heat transfer between the baryon and dark matter fluids in the early Universe, ultimately erasing structure on small physical scales and reducing the abundance of low-mass halos that host dwarf galaxies today. From the consistency of observations with the cold collisionless dark matter paradigm, using a new method that relies on the most robust predictions of the linear perturbation theory, we infer an upper limit on $sigma_0$ of $1.4times10^{-23}$, $2.1times10^{-19}$, and $1.0times10^{-12} mathrm{cm}^2$, for interaction models with $n=2,4,6$, respectively, for a dark matter particle mass of $10 mathrm{MeV}$. These results improve observational limits on dark matter--proton scattering by orders of magnitude and thus provide an important guide for viable sub-GeV dark matter candidates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا