Do you want to publish a course? Click here

Spectrally Extended Line Field Optical Coherence Tomography Angiography

130   0   0.0 ( 0 )
 Added by Si Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical coherence tomography angiography (OCTA) has been established as a powerful tool for investigating vascular diseases and is expected to become a standard of care technology. However, its widespread clinical usage is hindered by technical gaps such as limited field of view (FOV), lack of quantitative flow information, and suboptimal motion correction. Here we report a new imaging platform, termed spectrally extended line field (SELF) OCTA that provides advanced solutions to the above-mentioned challenges. SELF-OCTA breaks the speed limitations and achieves two-fold gain in FOV without sacrificing signal strength through parallel image acquisition. Towards quantitative angiography, the frequency flow imaging mechanism overcomes the imaging speed bottleneck by obviating the requirement for superfluous B-scans. In addition, the frequency flow imaging mechanism facilitates OCTA-data based motion tracking with overlap between adjacent line fields. Since it can be implemented in any existing OCT device without significant hardware modification or affecting existing functions, we expect that SELF-OCTA will make non-invasive, wide field, quantitative, and low-cost angiographic imaging available to larger patient populations.

rate research

Read More

Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging %and material testing in the last twenty years. In up-to-date OCT literature [5,6] certain simplifying assumptions are made for the reconstructions, but for many applications a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or %although having a huge impact on the laser power inside the sample is usually neglected or a plane wave description for the light-sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data and therefore ultimately serves as a forward model. The accuracy of the proposed model - after calibration of all necessary system parameters - is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300nm swept-source OCT system.
The speckle statistics of optical coherence tomography images of biological tissue have been studied using several historical probability density functions. A recent hypothesis implies that underlying power-law distributions in the medium structure, such as the fractal branching vasculature, will contribute to power-law probability distributions of speckle statistics. Specifically, these are the Burr type XII distribution for speckle amplitude, the Lomax distribution for intensity, and the generalized logistic distribution for log amplitude. In this study, these three distributions are fitted to histogram data from nine optical coherence tomography scans of various biological tissues and samples. The distributions are also compared with conventional distributions such as the Rayleigh, K, and gamma distributions. The results indicate that these newer distributions based on power laws are, in general, more appropriate models and support the plausibility of their use for characterizing biological tissue. Potentially, the governing power-law parameter of these distributions could be used as a biomarker for tissue disease or pathology.
In this paper, we revisit the well-known Hong-Ou-Mandel (HOM) effect in which two photons, which meet at a beamsplitter, can interfere destructively, leading to null in coincidence counts. In a standard HOM measurement, the coincidence counts across the two output ports of the beamsplitter are monitored as the temporal delay between the two photons prior to the beamsplitter is varied, resulting in the well-known HOM dip. We show, both theoretically and experimentally, that by leaving the delay fixed at a particular value while relying on spectrally-resolved coincidence photon-counting, we can reconstruct the HOM dip, which would have been obtained through a standard delay-scanning, non-spectrally-resolved HOM measurement. We show that our numerical reconstruction procedure exhibits a novel dispersion cancellation effects, to all orders. We discuss how our present work can lead to a drastic reduction in the time required to acquire a HOM interferogram, and specifically discuss how this could be of particular importance for the implementation of efficient quantum-optical coherence tomography devices.
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose challenges in segmentation. Our study focused on removing the speckle noise artifact from OCTA images when performing segmentation. Speckle noise is common in OCTA and is particularly prominent over large non-perfusion areas. It may interfere with the proper assessment of retinal vasculature. In this study, we proposed a novel Supervision Vessel Segmentation network (SVS-net) to detect vessels of different sizes. The SVS-net includes a new attention-based module to describe vessel positions and facilitate the understanding of the network learning process. The model is efficient and explainable and could be utilized to reduce the need for manual labeling. Our SVS-net had better performance in accuracy, recall, F1 score, and Kappa score when compared to other well recognized models.
Optical-coherence tomography (OCT) is a technique that employs light in order to measure the internal structure of semi-transparent, e.g. biological, samples. It is based on the interference pattern of low-coherence light. Quantum-OCT (QOCT), instead, employs the correlation properties of entangled photon pairs, for example, generated by the process of spontaneous parametric downconversion (SPDC). The usual QOCT scheme uses photon pairs characterised by a joint-spectral amplitude with strict spectral anti-correlations. It has been shown that, in contrast with its classical counterpart, QOCT provides resolution enhancement and dispersion cancellation. In this paper, we revisit the theory of QOCT and extend the theoretical model so as to include photon pairs with arbitrary spectral correlations. We present experimental results that complement the theory and explain the physical underpinnings appearing in the interference pattern. In our experiment, we utilize a pump for the SPDC process ranging from continuous wave to pulsed in the femtosecond regime, and show that cross-correlation interference effects appearing for each pair of layers may be directly suppressed for a sufficiently large pump bandwidth. Our results provide insights and strategies that could guide practical implementations of QOCT.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا