Do you want to publish a course? Click here

Speckle Statistics of Biological Tissues in Optical Coherence Tomography

146   0   0.0 ( 0 )
 Added by Gary Ge
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The speckle statistics of optical coherence tomography images of biological tissue have been studied using several historical probability density functions. A recent hypothesis implies that underlying power-law distributions in the medium structure, such as the fractal branching vasculature, will contribute to power-law probability distributions of speckle statistics. Specifically, these are the Burr type XII distribution for speckle amplitude, the Lomax distribution for intensity, and the generalized logistic distribution for log amplitude. In this study, these three distributions are fitted to histogram data from nine optical coherence tomography scans of various biological tissues and samples. The distributions are also compared with conventional distributions such as the Rayleigh, K, and gamma distributions. The results indicate that these newer distributions based on power laws are, in general, more appropriate models and support the plausibility of their use for characterizing biological tissue. Potentially, the governing power-law parameter of these distributions could be used as a biomarker for tissue disease or pathology.



rate research

Read More

Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, the current method for capturing these microscopy images require resource intensive tissue preparation that delays diagnosis for many days to a few weeks. To streamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, we present a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography (SS-OCT) system designed to circumvent these diagnostic limitations. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. Here, we present the first images of nuclear contrast in resected human tissues, and the first 3-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system. Moreover, we present the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a real-time histological imaging modality to circumvent the limitations of current histopathology techniques.
Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging %and material testing in the last twenty years. In up-to-date OCT literature [5,6] certain simplifying assumptions are made for the reconstructions, but for many applications a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or %although having a huge impact on the laser power inside the sample is usually neglected or a plane wave description for the light-sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data and therefore ultimately serves as a forward model. The accuracy of the proposed model - after calibration of all necessary system parameters - is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300nm swept-source OCT system.
129 - Si Chen , Kan Lin , Linbo Liu 2021
Optical coherence tomography angiography (OCTA) has been established as a powerful tool for investigating vascular diseases and is expected to become a standard of care technology. However, its widespread clinical usage is hindered by technical gaps such as limited field of view (FOV), lack of quantitative flow information, and suboptimal motion correction. Here we report a new imaging platform, termed spectrally extended line field (SELF) OCTA that provides advanced solutions to the above-mentioned challenges. SELF-OCTA breaks the speed limitations and achieves two-fold gain in FOV without sacrificing signal strength through parallel image acquisition. Towards quantitative angiography, the frequency flow imaging mechanism overcomes the imaging speed bottleneck by obviating the requirement for superfluous B-scans. In addition, the frequency flow imaging mechanism facilitates OCTA-data based motion tracking with overlap between adjacent line fields. Since it can be implemented in any existing OCT device without significant hardware modification or affecting existing functions, we expect that SELF-OCTA will make non-invasive, wide field, quantitative, and low-cost angiographic imaging available to larger patient populations.
Tissue biopsy evaluation in the clinic is in need of quantitative disease markers for diagnosis and, most importantly, prognosis. Among the new technologies, quantitative phase imaging (QPI) has demonstrated promise for histopathology because it reveals intrinsic tissue nanoarchitecture through the refractive index. However, a vast majority of past QPI investigations have relied on imaging unstained tissues, which disrupts the established specimen processing. Here we present color spatial light interference microscopy (cSLIM) as a new whole slide imaging modality that performs interferometric imaging with a color detector array. As a result, cSLIM yields in a single scan both the intrinsic tissue phase map and the standard color bright-field image, familiar to the pathologist. Our results on 196 breast cancer patients indicate that cSLIM can provide not only diagnostic but also prognostic information from the alignment of collagen fibers in the tumor microenvironment. The effects of staining on the tissue phase maps were corrected by a simple mathematical normalization. These characteristics are likely to reduce barriers to clinical translation for the new cSLIM technology.
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show a method based purely on light manipulation that is able to entirely remove the speckle noise originating from turbid samples without any compromise in resolution. We refer to this method as Speckle-Free OCT (SFOCT). Using SFOCT, we succeeded in revealing small structures that are otherwise hidden by speckle noise when using conventional OCT, including the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, sweat ducts, and Meissners corpuscle in the human fingertip skin. SFOCT has the potential to markedly increase OCTs diagnostic capabilities of various human diseases by revealing minute features that correlate with early pathology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا