Do you want to publish a course? Click here

Homeostatic Criticality in Neuronal Networks

234   0   0.0 ( 0 )
 Added by B\\'oris Marin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality is only present for vanishing driving external fields $h rightarrow 0$. Considering that this is rarely the case for natural systems, such a restriction poses a challenge to the explanatory power of these models. Besides that, in models of dissipative systems like earthquakes, forest fires and neuronal networks, there is no true critical behavior, as expressed in clean power laws obeying finite-size scaling, but a scenario called dirty criticality or self-organized quasi-criticality (SOqC). Here, we propose simple homeostatic mechanisms which promote self-organization of coupling strengths, gains, and firing thresholds in neuronal networks. We show that near criticality can be reached and sustained even in the presence of external inputs because the firing thresholds adapt to and cancel the inputs, a phenomenon similar to perfect adaptation in sensory systems. Similar mechanisms can be proposed for the couplings and local thresholds in spin systems and cellular automata, which could lead to applications in earthquake, forest fire, stellar flare, voting and epidemic modeling.



rate research

Read More

Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.
Systems with many stable configurations abound in nature, both in living and inanimate matter. Their inherent nonlinearity and sensitivity to small perturbations make them challenging to study, particularly in the presence of external driving, which can alter the relative stability of different attractors. Under such circumstances, one may ask whether any clear relationship holds between the specific pattern of external driving and the particular attractor states selected by a driven multistable system. To gain insight into this question, we numerically study driven disordered mechanical networks of bistable springs which possess a vast number of stable configurations arising from the two stable rest lengths of each spring, thereby capturing the essential physical properties of a broad class of multistable systems. We find that the attractor states of driven disordered multistable mechanical networks are fine-tuned with respect to the pattern of external forcing to have low work absorption from it. Furthermore, we find that these drive-specific attractor states are even more stable than expected for a given level of work absorption. Our results suggest that the driven exploration of the vast configuration space of these systems is biased towards states with exceptional relationship to the driving environment, and could therefore be used to `discover states with desired response properties in systems with a vast landscape of diverse configurations.
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology based on a local coupling between a dynamical order parameter and rewiring of network connectivity, with convergence towards criticality in the limit of large network size $N$. In particular, two adaptive schemes are discussed and compared in the context of Boolean Networks and Threshold Networks: 1) Active nodes loose links, frozen nodes aquire new links, 2) Nodes with correlated activity connect, de-correlated nodes disconnect. These simple local adaptive rules lead to co-evolution of network topology and -dynamics. Adaptive networks are strikingly different from random networks: They evolve inhomogeneous topologies and broad plateaus of homeostatic regulation, dynamical activity exhibits $1/f$ noise and attractor periods obey a scale-free distribution. The proposed co-evolutionary mechanism of topological self-organization is robust against noise and does not depend on the details of dynamical transition rules. Using finite-size scaling, it is shown that networks converge to a self-organized critical state in the thermodynamic limit. Finally, we discuss open questions and directions for future research, and outline possible applications of these models to adaptive systems in diverse areas.
Spontaneous synchronization is a remarkable collective effect observed in nature, whereby a population of oscillating units, which have diverse natural frequencies and are in weak interaction with one another, evolves to spontaneously exhibit collective oscillations at a common frequency. The Kuramoto model provides the basic analytical framework to study spontaneous synchronization. The model comprises limit-cycle oscillators with distributed natural frequencies interacting through a mean-field coupling. Although more than forty years have passed since its introduction, the model continues to occupy the centre-stage of research in the field of non-linear dynamics, and is also widely applied to model diverse physical situations. In this brief review, starting with a derivation of the Kuramoto model and the synchronization phenomenon it exhibits, we summarize recent results on the study of a generalized Kuramoto model that includes inertial effects and stochastic noise. We describe the dynamics of the generalized model from a different yet a rather useful perspective, namely, that of long-range interacting systems driven out of equilibrium by quenched disordered external torques. A system is said to be long-range interacting if the inter-particle potential decays slowly as a function of distance. Using tools of statistical physics, we highlight the equilibrium and nonequilibrium aspects of the dynamics of the generalized Kuramoto model, and uncover a rather rich and complex phase diagram that it exhibits, which underlines the basic theme of intriguing emergent phenomena that are exhibited by many-body complex systems.
We present a study on the selection of a variety of activity patterns among neurons that are connected in multiplex framework, with neurons on two layers with different functional couplings. With Hindmarsh-Rose model for the dynamics of single neurons, we analyze the possible patterns of dynamics in each layer separately, and report emergent patterns of activity like anti-phase oscillations in multi-clusters with phase regularities and enhanced amplitude and frequency with mixed mode oscillations when the connections are inhibitory. When they are multiplexed with neurons of one layer coupled with excitatory synaptic coupling and neurons of the other layer coupled with inhibitory synaptic coupling, we observe transfer or selection of interesting patterns of collective behaviour between the layers, inducing anti-phase oscillations and multi-cluster oscillations. While the revival of oscillations occurs in the layer with excitatory coupling, the transition from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory synaptic coupling. We also discuss how the selection of these patterns can be controlled by tuning the intra-layer or inter-layer coupling strengths or increasing the range of non-local coupling. With one layer having electrical coupling while the other synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized patterns of activity among neurons in both layers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا