Do you want to publish a course? Click here

Spin systems with hyperbolic symmetry: a survey

185   0   0.0 ( 0 )
 Added by Roland Bauerschmidt
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin systems with hyperbolic symmetry originated as simplified models for the Anderson metal--insulator transition, and were subsequently found to exactly describe probabilistic models of linearly reinforced walks and random forests. In this survey we introduce these models, discuss their origins and main features, some existing tools available for their study, recent probabilistic results, and relations to other well-studied probabilistic models. Along the way we discuss some of the (many) open questions that remain.



rate research

Read More

We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The arboreal gas can equivalently be defined to be Bernoulli bond percolation with parameter $p=beta/(1+beta)$ conditioned to be acyclic, or as the limit $qto 0$ with $p=beta q$ of the random cluster model. It is known that on the complete graph $K_{N}$ with $beta=alpha/N$ there is a phase transition similar to that of the ErdH{o}s--Renyi random graph: a giant tree percolates for $alpha > 1$ and all trees have bounded size for $alpha<1$. In contrast to this, by exploiting an exact relationship between the arboreal gas and a supersymmetric sigma model with hyperbolic target space, we show that the forest constraint is significant in two dimensions: trees do not percolate on $mathbb{Z}^2$ for any finite $beta>0$. This result is a consequence of a Mermin--Wagner theorem associated to the hyperbolic symmetry of the sigma model. Our proof makes use of two main ingredients: techniques previously developed for hyperbolic sigma models related to linearly reinforced random walks and a version of the principle of dimensional reduction.
We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ballistic. The latter implication is proved to hold for arbitrary transitive graphs. Moreover, for every fixed $k$, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion $d-1-O(1/d)$ as $dto infty$; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length $n$ is comparable to the $n$th power of their connective constant. Some of these results were previously obtained by Madras and Wu cite{MaWuSAW} for all but finitely many regular tessellations of the hyperbolic plane.
The gamma kernels are a family of projection kernels $K^{(z,z)}=K^{(z,z)}(x,y)$ on a doubly infinite $1$-dimensional lattice. They are expressed through Eulers gamma function and depend on two continuous parameters $z,z$. The gamma kernels initially arose from a model of random partitions via a limit transition. On the other hand, these kernels are closely related to unitarizable representations of the Lie algebra $mathfrak{su}(1,1)$. Every gamma kernel $K^{(z,z)}$ serves as a correlation kernel for a determinantal measure $M^{(z,z)}$, which lives on the space of infinite point configurations on the lattice. We examine chains of kernels of the form $$ ldots, K^{(z-1,z-1)}, ; K^{(z,z)},; K^{(z+1,z+1)}, ldots, $$ and establish the following hierarchical relations inside any such chain: Given $(z,z)$, the kernel $K^{(z,z)}$ is a one-dimensional perturbation of (a twisting of) the kernel $K^{(z+1,z+1)}$, and the one-point Palm distributions for the measure $M^{(z,z)}$ are absolutely continuous with respect to $M^{(z+1,z+1)}$. We also explicitly compute the corresponding Radon-Nikodym derivatives and show that they are given by certain normalized multiplicative functionals.
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
The box-ball systems are integrable cellular automata whose long-time behavior is characterized by the soliton solutions, and have rich connections to other integrable systems such as Korteweg-de Veris equation. In this paper, we consider multicolor box-ball system with two types of random initial configuration and obtain the scaling limit of the soliton lengths as the system size tends to infinity. Our analysis is based on modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا