Do you want to publish a course? Click here

Random spanning forests and hyperbolic symmetry

140   0   0.0 ( 0 )
 Added by Roland Bauerschmidt
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study (unrooted) random forests on a graph where the probability of a forest is multiplicatively weighted by a parameter $beta>0$ per edge. This is called the arboreal gas model, and the special case when $beta=1$ is the uniform forest model. The arboreal gas can equivalently be defined to be Bernoulli bond percolation with parameter $p=beta/(1+beta)$ conditioned to be acyclic, or as the limit $qto 0$ with $p=beta q$ of the random cluster model. It is known that on the complete graph $K_{N}$ with $beta=alpha/N$ there is a phase transition similar to that of the ErdH{o}s--Renyi random graph: a giant tree percolates for $alpha > 1$ and all trees have bounded size for $alpha<1$. In contrast to this, by exploiting an exact relationship between the arboreal gas and a supersymmetric sigma model with hyperbolic target space, we show that the forest constraint is significant in two dimensions: trees do not percolate on $mathbb{Z}^2$ for any finite $beta>0$. This result is a consequence of a Mermin--Wagner theorem associated to the hyperbolic symmetry of the sigma model. Our proof makes use of two main ingredients: techniques previously developed for hyperbolic sigma models related to linearly reinforced random walks and a version of the principle of dimensional reduction.



rate research

Read More

The arboreal gas is the probability measure on (unrooted spanning) forests of a graph in which each forest is weighted by a factor $beta>0$ per edge. It arises as the $qto 0$ limit with $p=beta q$ of the $q$-state random cluster model. We prove that in dimensions $dgeq 3$ the arboreal gas undergoes a percolation phase transition. This contrasts with the case of $d=2$ where all trees are finite for all $beta>0$. The starting point for our analysis is an exact relationship between the arboreal gas and a fermionic non-linear sigma model with target space $mathbb{H}^{0|2}$. This latter model can be thought of as the $0$-state Potts model, with the arboreal gas being its random cluster representation. Unlike the $q>0$ Potts models, the $mathbb{H}^{0|2}$ model has continuous symmetries. By combining a renormalisation group analysis with Ward identities we prove that this symmetry is spontaneously broken at low temperatures. In terms of the arboreal gas, this symmetry breaking translates into the existence of infinite trees in the thermodynamic limit. Our analysis also establishes massless free field correlations at low temperatures and the existence of a macroscopic tree on finite tori.
Spin systems with hyperbolic symmetry originated as simplified models for the Anderson metal--insulator transition, and were subsequently found to exactly describe probabilistic models of linearly reinforced walks and random forests. In this survey we introduce these models, discuss their origins and main features, some existing tools available for their study, recent probabilistic results, and relations to other well-studied probabilistic models. Along the way we discuss some of the (many) open questions that remain.
85 - Miquel Montero 2019
The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the features of a simple random walk, shows other traits that one would associate with a biased random walk and, at the same time, presents new properties not related with either of them. In particular, we show how the system is not fully ergodic, as not every statistic can be estimated from a single realization of the process. We further give a geometric interpretation for the origin of these irregular transition probabilities.
68 - Pengfei Tang 2019
Considering the wired uniform spanning forest on a nonunimodular transitive graph, we show that almost surely each tree of the wired uniform spanning forest is light. More generally we study the tilted volumes for the trees in the wired uniform spanning forest. Regarding the free uniform spanning forest, we consider several families of nonunimodular transitive graphs. We show that the free uniform spanning forest is the same as the wired one on Diestel--Leader graphs. For grandparent graphs, we show that the free uniform spanning forest is connected and has branching number bigger than one. We also show that each tree of the free uniform spanning forest is heavy and has branching number bigger than one on a free product of a nonunimodular transitive graph with one edge when the free uniform spanning forest is not the same as the wired.
We consider reversible random walks in random environment obtained from symmetric long--range jump rates on a random point process. We prove almost sure transience and recurrence results under suitable assumptions on the point process and the jump rate function. For recurrent models we obtain almost sure estimates on effective resistances in finite boxes. For transient models we construct explicit fluxes with finite energy on the associated electrical network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا