Do you want to publish a course? Click here

Reasoning Graph Networks for Kinship Verification: from Star-shaped to Hierarchical

96   0   0.0 ( 0 )
 Added by Wanhua Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks. Conventional methods usually focus on learning discriminative features for each facial image of a paired sample and neglect how to fuse the obtained two facial image features and reason about the relations between them. To address this, we propose a Star-shaped Reasoning Graph Network (S-RGN). Our S-RGN first constructs a star-shaped graph where each surrounding node encodes the information of comparisons in a feature dimension and the central node is employed as the bridge for the interaction of surrounding nodes. Then we perform relational reasoning on this star graph with iterative message passing. The proposed S-RGN uses only one central node to analyze and process information from all surrounding nodes, which limits its reasoning capacity. We further develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity. More specifically, our H-RGN introduces a set of latent reasoning nodes and constructs a hierarchical graph with them. Then bottom-up comparative information abstraction and top-down comprehensive signal propagation are iteratively performed on the hierarchical graph to update the node features. Extensive experimental results on four widely used kinship databases show that the proposed methods achieve very competitive results.



rate research

Read More

In this paper, we propose a graph-based kinship reasoning (GKR) network for kinship verification, which aims to effectively perform relational reasoning on the extracted features of an image pair. Unlike most existing methods which mainly focus on how to learn discriminative features, our method considers how to compare and fuse the extracted feature pair to reason about the kin relations. The proposed GKR constructs a star graph called kinship relational graph where each peripheral node represents the information comparison in one feature dimension and the central node is used as a bridge for information communication among peripheral nodes. Then the GKR performs relational reasoning on this graph with recursive message passing. Extensive experimental results on the KinFaceW-I and KinFaceW-II datasets show that the proposed GKR outperforms the state-of-the-art methods.
Kinship verification aims to find out whether there is a kin relation for a given pair of facial images. Kinship verification databases are born with unbalanced data. For a database with N positive kinship pairs, we naturally obtain N(N-1) negative pairs. How to fully utilize the limited positive pairs and mine discriminative information from sufficient negative samples for kinship verification remains an open issue. To address this problem, we propose a Discriminative Sample Meta-Mining (DSMM) approach in this paper. Unlike existing methods that usually construct a balanced dataset with fixed negative pairs, we propose to utilize all possible pairs and automatically learn discriminative information from data. Specifically, we sample an unbalanced train batch and a balanced meta-train batch for each iteration. Then we learn a meta-miner with the meta-gradient on the balanced meta-train batch. In the end, the samples in the unbalanced train batch are re-weighted by the learned meta-miner to optimize the kinship models. Experimental results on the widely used KinFaceW-I, KinFaceW-II, TSKinFace, and Cornell Kinship datasets demonstrate the effectiveness of the proposed approach.
Solving grounded language tasks often requires reasoning about relationships between objects in the context of a given task. For example, to answer the question What color is the mug on the plate? we must check the color of the specific mug that satisfies the on relationship with respect to the plate. Recent work has proposed various methods capable of complex relational reasoning. However, most of their power is in the inference structure, while the scene is represented with simple local appearance features. In this paper, we take an alternate approach and build contextualized representations for objects in a visual scene to support relational reasoning. We propose a general framework of Language-Conditioned Graph Networks (LCGN), where each node represents an object, and is described by a context-aware representation from related objects through iterative message passing conditioned on the textual input. E.g., conditioning on the on relationship to the plate, the object mug gathers messages from the object plate to update its representation to mug on the plate, which can be easily consumed by a simple classifier for answer prediction. We experimentally show that our LCGN approach effectively supports relational reasoning and improves performance across several tasks and datasets. Our code is available at http://ronghanghu.com/lcgn.
Kinship verification from facial images has been recognized as an emerging yet challenging technique in many potential computer vision applications. In this paper, we propose a novel cross-generation feature interaction learning (CFIL) framework for robust kinship verification. Particularly, an effective collaborative weighting strategy is constructed to explore the characteristics of cross-generation relations by corporately extracting features of both parents and children image pairs. Specifically, we take parents and children as a whole to extract the expressive local and non-local features. Different from the traditional works measuring similarity by distance, we interpolate the similarity calculations as the interior auxiliary weights into the deep CNN architecture to learn the whole and natural features. These similarity weights not only involve corresponding single points but also excavate the multiple relationships cross points, where local and non-local features are calculated by using these two kinds of distance measurements. Importantly, instead of separately conducting similarity computation and feature extraction, we integrate similarity learning and feature extraction into one unified learning process. The integrated representations deduced from local and non-local features can comprehensively express the informative semantics embedded in images and preserve abundant correlation knowledge from image pairs. Extensive experiments demonstrate the efficiency and superiority of the proposed model compared to some state-of-the-art kinship verification methods.
Video-and-Language Inference is a recently proposed task for joint video-and-language understanding. This new task requires a model to draw inference on whether a natural language statement entails or contradicts a given video clip. In this paper, we study how to address three critical challenges for this task: judging the global correctness of the statement involved multiple semantic meanings, joint reasoning over video and subtitles, and modeling long-range relationships and complex social interactions. First, we propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions. Specifically, it performs joint reasoning over video and subtitles in three hierarchies, where the graph structure is adaptively adjusted according to the semantic structures of the statement. Secondly, we introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies. The semantic coherence learning can further improve the alignment between vision and linguistics, and the coherence across a sequence of video segments. Experimental results show that our method significantly outperforms the baseline by a large margin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا