No Arabic abstract
In this paper, we propose a graph-based kinship reasoning (GKR) network for kinship verification, which aims to effectively perform relational reasoning on the extracted features of an image pair. Unlike most existing methods which mainly focus on how to learn discriminative features, our method considers how to compare and fuse the extracted feature pair to reason about the kin relations. The proposed GKR constructs a star graph called kinship relational graph where each peripheral node represents the information comparison in one feature dimension and the central node is used as a bridge for information communication among peripheral nodes. Then the GKR performs relational reasoning on this graph with recursive message passing. Extensive experimental results on the KinFaceW-I and KinFaceW-II datasets show that the proposed GKR outperforms the state-of-the-art methods.
In this paper, we investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks. Conventional methods usually focus on learning discriminative features for each facial image of a paired sample and neglect how to fuse the obtained two facial image features and reason about the relations between them. To address this, we propose a Star-shaped Reasoning Graph Network (S-RGN). Our S-RGN first constructs a star-shaped graph where each surrounding node encodes the information of comparisons in a feature dimension and the central node is employed as the bridge for the interaction of surrounding nodes. Then we perform relational reasoning on this star graph with iterative message passing. The proposed S-RGN uses only one central node to analyze and process information from all surrounding nodes, which limits its reasoning capacity. We further develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity. More specifically, our H-RGN introduces a set of latent reasoning nodes and constructs a hierarchical graph with them. Then bottom-up comparative information abstraction and top-down comprehensive signal propagation are iteratively performed on the hierarchical graph to update the node features. Extensive experimental results on four widely used kinship databases show that the proposed methods achieve very competitive results.
Human beings are fundamentally sociable -- that we generally organize our social lives in terms of relations with other people. Understanding social relations from an image has great potential for intelligent systems such as social chatbots and personal assistants. In this paper, we propose a simpler, faster, and more accurate method named graph relational reasoning network (GR2N) for social relation recognition. Different from existing methods which process all social relations on an image independently, our method considers the paradigm of jointly inferring the relations by constructing a social relation graph. Furthermore, the proposed GR2N constructs several virtual relation graphs to explicitly grasp the strong logical constraints among different types of social relations. Experimental results illustrate that our method generates a reasonable and consistent social relation graph and improves the performance in both accuracy and efficiency.
Recent researches on panoptic segmentation resort to a single end-to-end network to combine the tasks of instance segmentation and semantic segmentation. However, prior models only unified the two related tasks at the architectural level via a multi-branch scheme or revealed the underlying correlation between them by unidirectional feature fusion, which disregards the explicit semantic and co-occurrence relations among objects and background. Inspired by the fact that context information is critical to recognize and localize the objects, and inclusive object details are significant to parse the background scene, we thus investigate on explicitly modeling the correlations between object and background to achieve a holistic understanding of an image in the panoptic segmentation task. We introduce a Bidirectional Graph Reasoning Network (BGRNet), which incorporates graph structure into the conventional panoptic segmentation network to mine the intra-modular and intermodular relations within and between foreground things and background stuff classes. In particular, BGRNet first constructs image-specific graphs in both instance and semantic segmentation branches that enable flexible reasoning at the proposal level and class level, respectively. To establish the correlations between separate branches and fully leverage the complementary relations between things and stuff, we propose a Bidirectional Graph Connection Module to diffuse information across branches in a learnable fashion. Experimental results demonstrate the superiority of our BGRNet that achieves the new state-of-the-art performance on challenging COCO and ADE20K panoptic segmentation benchmarks.
Recently, studies of visual question answering have explored various architectures of end-to-end networks and achieved promising results on both natural and synthetic datasets, which require explicitly compositional reasoning. However, it has been argued that these black-box approaches lack interpretability of results, and thus cannot perform well on generalization tasks due to overfitting the dataset bias. In this work, we aim to combine the benefits of both sides and overcome their limitations to achieve an end-to-end interpretable structural reasoning for general images without the requirement of layout annotations. Inspired by the property of a capsule network that can carve a tree structure inside a regular convolutional neural network (CNN), we propose a hierarchical compositional reasoning model called the Linguistically driven Graph Capsule Network, where the compositional process is guided by the linguistic parse tree. Specifically, we bind each capsule in the lowest layer to bridge the linguistic embedding of a single word in the original question with visual evidence and then route them to the same capsule if they are siblings in the parse tree. This compositional process is achieved by performing inference on a linguistically driven conditional random field (CRF) and is performed across multiple graph capsule layers, which results in a compositional reasoning process inside a CNN. Experiments on the CLEVR dataset, CLEVR compositional generation test, and FigureQA dataset demonstrate the effectiveness and composition generalization ability of our end-to-end model.
In this paper, we propose a spectral-spatial graph reasoning network (SSGRN) for hyperspectral image (HSI) classification. Concretely, this network contains two parts that separately named spatial graph reasoning subnetwork (SAGRN) and spectral graph reasoning subnetwork (SEGRN) to capture the spatial and spectral graph contexts, respectively. Different from the previous approaches implementing superpixel segmentation on the original image or attempting to obtain the category features under the guide of label image, we perform the superpixel segmentation on intermediate features of the network to adaptively produce the homogeneous regions to get the effective descriptors. Then, we adopt a similar idea in spectral part that reasonably aggregating the channels to generate spectral descriptors for spectral graph contexts capturing. All graph reasoning procedures in SAGRN and SEGRN are achieved through graph convolution. To guarantee the global perception ability of the proposed methods, all adjacent matrices in graph reasoning are obtained with the help of non-local self-attention mechanism. At last, by combining the extracted spatial and spectral graph contexts, we obtain the SSGRN to achieve a high accuracy classification. Extensive quantitative and qualitative experiments on three public HSI benchmarks demonstrate the competitiveness of the proposed methods compared with other state-of-the-art approaches.