Do you want to publish a course? Click here

First application of dispersive optical model to ($p$,$2p$) analysis within distorted wave impulse approximation framework

94   0   0.0 ( 0 )
 Added by Kazuki Yoshida
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Both ($e$,$ep$) and ($p$,$2p$) reactions have been performed to study the proton single-particle character of nuclear states with its related spectroscopic factor. Recently, the dispersive optical model (DOM) was applied to the ($e$,$ep$) analysis revealing that the traditional treatment of the single-particle overlap function, distorted waves, and nonlocality must be further improved to achieve quantitative nuclear spectroscopy. We apply the DOM wave functions to the traditional ($p$,$2p$) analysis and investigate the consistency of the DOM spectroscopic factor that describes the ($e$,$ep$) cross section with the result of the ($p$,$2p$) analysis. Additionally, we make a comparison with a phenomenological single-particle wave function and optical potential. Uncertainty arising from a choice of $p$-$p$ interaction is also investigated. We implement the DOM wave functions to the distorted wave impulse approximation (DWIA) framework for ($p$,$2p$) reactions. DOM + DWIA analysis on $^{40}$Ca($p$,$2p$)$^{39}$K data generates a proton $0d_{3/2}$ spectroscopic factor of 0.560, which is meaningfully smaller than the DOM value of 0.71 shown to be consistent with the ($e$,$ep$) analysis. Uncertainties arising from choices of single-particle wave function, optical potential, and $p$-$p$ interaction do not explain this inconsistency. The inconsistency in the spectroscopic factor suggests there is urgent need for improving the description of $p$-$p$ scattering in a nucleus and the resulting in-medium interaction with corresponding implications for the analysis of this reaction in inverse kinematics.



rate research

Read More

Background: Proton-induced nucleon knockout $(p,pN)$ reactions have been successfully used to study the single-particle nature of stable nuclei in normal kinematics with the distorted-wave impulse approximation (DWIA) framework. Recently, these reactions have been applied to rare-isotope beams at intermediate energies in inverse kinematics to study the quenching of spectroscopic factors. Purpose: Our goal is to investigate the effects of various corrections and uncertainties within the standard DWIA formalism on the $(p,pN)$ cross sections. The consistency of the extracted reduction factors between DWIA and other methods is also evaluated. Method: We analyze the $(p,2p)$ and $(p,pn)$ reactions data measured at the R$^3$B/LAND setup at GSI for carbon, nitrogen, and oxygen isotopes in the incident energy range of 300--450 MeV/u. Cross sections and reduction factors are calculated by using the DWIA method. The transverse momentum distribution of the $^{12}$C($p$,$2p$)$^{11}$B reaction is also investigated. Results: We have found that including the nonlocality corrections and the Mo ller factor affects the cross sections considerably. The proton-neutron asymmetry dependence of reduction factors extracted by the DWIA calculation is very weak and consistent with those given by other reaction methods and textit{ab initio} structure calculations. Conclusions: The results found in this work provide a detailed investigation of the DWIA method for $(p,pN)$ reactions at intermediate energies. They also suggest that some higher-order effects, which is essential for an accurate cross-section description at large recoil momentum, is missing in the current DWIA and other reaction models.
145 - R. Crespo , A. Deltuva , E. Cravo 2008
Full Faddeev-type calculations are performed for $^{11}$Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.
Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the $^3$H$(d,n)^4$He and $^3$He$(d,p)^4$He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of $(d,p)$ reactions to processes with light $p$-shell nuclei. As a first application, we study the elastic scattering of deuterium on $^7$Li and the ${}^{7}$Li($d$,$p$)${}^{8}$Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shape of the excitation functions for deuteron impinging on ${}^{7}$Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between $d$-$^7$Li and $p$-$^8$Li particle-decay channels determines some features of the ${}^{9}$Be spectrum above the $d$+${}^{7}$Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment Conclusions: Deuteron stripping reactions with $p$-shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the ${}^{7}$Li($d$,$p$)${}^{8}$Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels, and improve the convergence rate of our calculations.
The dispersive optical-model is applied to transfer reactions. A systematic study of $(d,p)$ reactions on closed-shell nuclei using the finite-range adiabatic reaction model is performed at several beam energies and results are compared to data as well as to predictions using a standard global optical-potential. Overall, we find that the dispersive optical-model is able to describe the angular distributions as well as or better than the global parameterization. In addition, it also constrains the overlap function. Spectroscopic factors extracted using the dispersive optical-model are generally lower than those using standard parameters, exhibit a reduced dependence on beam energy, and are more in line with results obtained from $(e,ep)$ measurements.
346 - A. J. Toubiana , L. F. Canto , 2016
In this paper we revisit the one-dimensional tunneling problem. We consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of this approximation by comparing their predictions for the cross section and for the barrier distribution with the corresponding quantum mechanical results. We find that the extended Kembles approximation reproduces the results of quantum mechanics with great accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا