Do you want to publish a course? Click here

Improved WKB approximation for quantum tunneling: Application to heavy ion fusion

347   0   0.0 ( 0 )
 Added by Mahir S. Hussein
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we revisit the one-dimensional tunneling problem. We consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of this approximation by comparing their predictions for the cross section and for the barrier distribution with the corresponding quantum mechanical results. We find that the extended Kembles approximation reproduces the results of quantum mechanics with great accuracy.



rate research

Read More

In this paper we revisit the one-dimensional tunnelling problem. We consider different approximations for the transmission through the Coulomb barrier in heavy ion collisions at near-barrier energies. First, we discuss approximations of the barrier shape by functional forms where the transmission coefficient is known analytically. Then, we consider Kembles approximation for the transmission coefficient. We show how this approximation can be extended to above-barrier energies by performing the analytical continuation of the radial coordinate to the complex plane. We investigate the validity of the different approximations considered in this paper by comparing their predictions for transmission coefficients and cross sections of three heavy ion systems with the corresponding quantum mechanical results.
We carefully compare the one-dimensional WKB barrier tunneling model, and the one-channel Schodinger equation with a complex optical potential calculation of heavy-ion fusion, for a light and a heavy system. It is found that the major difference between the two approaches occurs around the critical energy, above which the effective potential for the grazing angular momentum ceases to exhibit a pocket. The value of this critical energy is shown to be strongly dependent on the nuclear potential at short distances, on the inside region of the Coulomb barrier, and this dependence is much more important for heavy systems. Therefore the nuclear fusion process is expected to provide information on the nuclear potential in this inner region. We compare calculations with available data to show that the results are consistent with this expectation.
73 - K. Hagino , N. Rowley , 2015
The nuclear fusion is a reaction to form a compound nucleus. It plays an important role in several circumstances in nuclear physics as well as in nuclear astrophysics, such as synthesis of superheavy elements and nucleosynthesis in stars. Here we discuss two recent theoretical developments in heavy-ion fusion reactions at energies around the Coulomb barrier. The first topic is a generalization of the Wong formula for fusion cross sections in a single-channel problem. By introducing an energy dependence to the barrier parameters, we show that the generalized formula leads to results practically indistinguishable from a full quantal calculation, even for light symmetric systems such as $^{12}$C+$^{12}$C, for which fusion cross sections show an oscillatory behavior. We then discuss a semi-microscopic modeling of heavy-ion fusion reactions, which combine the coupled-channels approach to the state-of-the-art nuclear structure calculations for low-lying collective motions. We apply this method to subbarrier fusion reactions of $^{58}$Ni+$^{58}$Ni and $^{40}$Ca+$^{58}$Ni systems, and discuss the role of anharmonicity of the low-lying vibrational motions.
88 - M. Tokieda , K. Hagino 2017
Using the phenomenological quantum friction models introduced by Caldirola-Kanai, Kostin, and Albrecht, we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.
A recently proposed method, based on quadrupole and multiplicity fluctuations in heavy ion collisions, is modified in order to take into account distortions due to the Coulomb field. This is particularly interesting for bosons produced in heavy ion collisions, such as $d$ and $alpha$ particles. We derive temperatures and densities seen by the bosons and compare to similar calculations for fermions. The resulting energy densities agree rather well with each other and with the one derived from neutrons. This suggests that a common phenomenon, such as the sudden opening of many reaction channels and/or a liquid gas phase transition, is responsible for the agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا