Do you want to publish a course? Click here

A Critical Review of the state-of-the-art on Deep Neural Networks for Blood Glucose Prediction in Patients with Diabetes

328   0   0.0 ( 0 )
 Added by Felix Tena
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This article compares ten recently proposed neural networks and proposes two ensemble neural network-based models for blood glucose prediction. All of them are tested under the same dataset, preprocessing workflow, and tools using the OhioT1DM Dataset at three different prediction horizons: 30, 60, and 120 minutes. We compare their performance using the most common metrics in blood glucose prediction and rank the best-performing ones using three methods devised for the statistical comparison of the performance of multiple algorithms: scmamp, model confidence set, and superior predictive ability. Our analysis highlights those models with the highest probability of being the best predictors, estimates the increase in error of the models that perform more poorly with respect to the best ones, and provides a guide for their use in clinical practice.



rate research

Read More

84 - Woo Seok Lee , Junghyo Jo , 2020
Machine learning shows remarkable success for recognizing patterns in data. Here we apply the machine learning (ML) for the diagnosis of early stage diabetes, which is known as a challenging task in medicine. Blood glucose levels are tightly regulated by two counter-regulatory hormones, insulin and glucagon, and the failure of the glucose homeostasis leads to the common metabolic disease, diabetes mellitus. It is a chronic disease that has a long latent period the complicates detection of the disease at an early stage. The vast majority of diabetics result from that diminished effectiveness of insulin action. The insulin resistance must modify the temporal profile of blood glucose. Thus we propose to use ML to detect the subtle change in the temporal pattern of glucose concentration. Time series data of blood glucose with sufficient resolution is currently unavailable, so we confirm the proposal using synthetic data of glucose profiles produced by a biophysical model that considers the glucose regulation and hormone action. Multi-layered perceptrons, convolutional neural networks, and recurrent neural networks all identified the degree of insulin resistance with high accuracy above $85%$.
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.
Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. For the OhioT1DM dataset, containing eight weeks data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH), respectively. To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings - the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
In this paper, we build a new, simple, and interpretable mathematical model to describe the human glucose-insulin system. Our ultimate goal is the robust control of the blood glucose (BG) level of individuals to a desired healthy range, by means of adjusting the amount of nutrition and/or external insulin appropriately. By constructing a simple yet flexible model class, with interpretable parameters, this general model can be specialized to work in different settings, such as type 2 diabetes mellitus (T2DM) and intensive care unit (ICU); different choices of appropriate model functions describing uptake of nutrition and removal of glucose differentiate between the models. In both cases, the available data is sparse and collected in clinical settings, major factors that have constrained our model choice to the simple form adopted. The model has the form of a linear stochastic differential equation (SDE) to describe the evolution of the BG level. The model includes a term quantifying glucose removal from the bloodstream through the regulation system of the human body, and another two terms representing the effect of nutrition and externally delivered insulin. The parameters entering the equation must be learned in a patient-specific fashion, leading to personalized models. We present numerical results on patient-specific parameter estimation and future BG level forecasting in T2DM and ICU settings. The resulting model leads to the prediction of the BG level as an expected value accompanied by a band around this value which accounts for uncertainties in the prediction. Such predictions, then, have the potential for use as part of control systems which are robust to model imperfections and noisy data. Finally, a comparison of the predictive capability of the model with two different models specifically built for T2DM and ICU contexts is also performed.
Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the biomolecular structural information is not fully utilized. The essential long-range interactions among atoms are also neglected in GNN models. To this end, we propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool). Specifically, PGAL iteratively performs the node-edge aggregation process to update embeddings of nodes and edges while preserving the distance and angle information among atoms. Then, PiPool is adopted to gather interactive edges with a subsequent reconstruction loss to reflect the global interactions. Exhaustive experimental study on two benchmarks verifies the superiority of SIGN.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا