No Arabic abstract
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.
A novel mediator-free, non-enzymatic electrochemical sensor, based on a graphene-Schottky junction, was fabricated for glucose detection. The sensor offers a promising alternative to the conventional enzyme-catalyzed electrochemical continuous glucose monitoring systems (CGM), as it overcomes many of the drawbacks attributed to the enzymatic nature; namely, irreversibility, drift, and interference with body fluids, which affect their accuracy, reliability and longevity. Enhanced performance of the sensors is demonstrated through the band interaction at the graphene-Schottky junction, which yields stronger forward/reverse currents in response to 50 {mu}L glucose drop. Under optimized conditions, the linear response of the sensor to glucose concentration was valid in the range from 0 to 15 mmol/L with a detection limit of 0.5 mmol/L. The results indicated that the proposed sensor provided a highly sensitive, more facile method with good reproducibility for continuous glucose detection.
Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. For the OhioT1DM dataset, containing eight weeks data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH), respectively. To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings - the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
Road surface friction significantly impacts traffic safety and mobility. A precise road surface friction prediction model can help to alleviate the influence of inclement road conditions on traffic safety, Level of Service, traffic mobility, fuel efficiency, and sustained economic productivity. Most related previous studies are laboratory-based methods that are difficult for practical implementation. Moreover, in other data-driven methods, the demonstrated time-series features of road surface conditions have not been considered. This study employed a Long-Short Term Memory (LSTM) neural network to develop a data-driven road surface friction prediction model based on historical data. The proposed prediction model outperformed the other baseline models in terms of the lowest value of predictive performance measurements. The influence of the number of time-lags and the predicting time interval on predictive accuracy was analyzed. In addition, the influence of adding road surface water thickness, road surface temperature and air temperature on predictive accuracy also were investigated. The findings of this study can support road maintenance strategy development and decision making, thus mitigating the impact of inclement road conditions on traffic mobility and safety. Future work includes a modified LSTM-based prediction model development by accommodating flexible time intervals between time-lags.
In this paper we investigate the use of model-based reinforcement learning to assist people with Type 1 Diabetes with insulin dose decisions. The proposed architecture consists of multiple Echo State Networks to predict blood glucose levels combined with Model Predictive Controller for planning. Echo State Network is a version of recurrent neural networks which allows us to learn long term dependencies in the input of time series data in an online manner. Additionally, we address the quantification of uncertainty for a more robust control. Here, we used ensembles of Echo State Networks to capture model (epistemic) uncertainty. We evaluated the approach with the FDA-approved UVa/Padova Type 1 Diabetes simulator and compared the results against baseline algorithms such as Basal-Bolus controller and Deep Q-learning. The results suggest that the model-based reinforcement learning algorithm can perform equally or better than the baseline algorithms for the majority of virtual Type 1 Diabetes person profiles tested.
Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In aggregate loads such as at grids level, the inherent stochasticity and fluctuations are averaged-out, the problem becomes substantially easier. We propose an approach for short-term load forecasting at individual consumers (households) level, called Forecasting using Matrix Factorization (FMF). FMF does not use any consumers demographic or activity patterns information. Therefore, it can be applied to any locality with the readily available smart meters and weather data. We perform extensive experiments on three benchmark datasets and demonstrate that FMF significantly outperforms the computationally expensive state-of-the-art methods for this problem. We achieve up to 26.5% and 24.4 % improvement in RMSE over Regression Tree and Support Vector Machine, respectively and up to 36% and 73.2% improvement in MAPE over Random Forest and Long Short-Term Memory neural network, respectively.