No Arabic abstract
The wide application of smart devices enables the availability of multimodal data, which can be utilized in many tasks. In the field of multimodal sentiment analysis (MSA), most previous works focus on exploring intra- and inter-modal interactions. However, training a network with cross-modal information (language, visual, audio) is still challenging due to the modality gap, and existing methods still cannot ensure to sufficiently learn intra-/inter-modal dynamics. Besides, while learning dynamics within each sample draws great attention, the learning of inter-class relationships is neglected. Moreover, the size of datasets limits the generalization ability of existing methods. To address the afore-mentioned issues, we propose a novel framework HyCon for hybrid contrastive learning of tri-modal representation. Specifically, we simultaneously perform intra-/inter-modal contrastive learning and semi-contrastive learning (that is why we call it hybrid contrastive learning), with which the model can fully explore cross-modal interactions, preserve inter-class relationships and reduce the modality gap. Besides, a refinement term is devised to prevent the model falling into a sub-optimal solution. Moreover, HyCon can naturally generate a large amount of training pairs for better generalization and reduce the negative effect of limited datasets. Extensive experiments on public datasets demonstrate that our proposed method outperforms existing works.
We develop an approach to learning visual representations that embraces multimodal data, driven by a combination of intra- and inter-modal similarity preservation objectives. Unlike existing visual pre-training methods, which solve a proxy prediction task in a single domain, our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously, hence improving the quality of learned visual representations. By including multimodal training in a unified framework with different types of contrastive losses, our method can learn more powerful and generic visual features. We first train our model on COCO and evaluate the learned visual representations on various downstream tasks including image classification, object detection, and instance segmentation. For example, the visual representations pre-trained on COCO by our method achieve state-of-the-art top-1 validation accuracy of $55.3%$ on ImageNet classification, under the common transfer protocol. We also evaluate our method on the large-scale Stock images dataset and show its effectiveness on multi-label image tagging, and cross-modal retrieval tasks.
Multimodal sentiment analysis aims to extract and integrate semantic information collected from multiple modalities to recognize the expressed emotions and sentiment in multimodal data. This research areas major concern lies in developing an extraordinary fusion scheme that can extract and integrate key information from various modalities. However, one issue that may restrict previous work to achieve a higher level is the lack of proper modeling for the dynamics of the competition between the independence and relevance among modalities, which could deteriorate fusion outcomes by causing the collapse of modality-specific feature space or introducing extra noise. To mitigate this, we propose the Bi-Bimodal Fusion Network (BBFN), a novel end-to-end network that performs fusion (relevance increment) and separation (difference increment) on pairwise modality representations. The two parts are trained simultaneously such that the combat between them is simulated. The model takes two bimodal pairs as input due to the known information imbalance among modalities. In addition, we leverage a gated control mechanism in the Transformer architecture to further improve the final output. Experimental results on three datasets (CMU-MOSI, CMU-MOSEI, and UR-FUNNY) verifies that our model significantly outperforms the SOTA. The implementation of this work is available at https://github.com/declare-lab/multimodal-deep-learning.
Unsupervised representation learning has recently received lots of interest due to its powerful generalizability through effectively leveraging large-scale unlabeled data. There are two prevalent approaches for this, contrastive learning and generative pre-training, where the former learns representations from instance-wise discrimination tasks and the latter learns them from estimating the likelihood. These seemingly orthogonal approaches have their own strengths and weaknesses. Contrastive learning tends to extract semantic information and discards details irrelevant for classifying objects, making the representations effective for discriminative tasks while degrading robustness to out-of-distribution data. On the other hand, the generative pre-training directly estimates the data distribution, so the representations tend to be robust but not optimal for discriminative tasks. In this paper, we show that we could achieve the best of both worlds by a hybrid training scheme. Specifically, we demonstrated that a transformer-based encoder-decoder architecture trained with both contrastive and generative losses can learn highly discriminative and robust representations without hurting the generative performance. We extensively validate our approach on various tasks.
There are a wide range of applications that involve multi-modal data, such as cross-modal retrieval, visual question-answering, and image captioning. Such applications are primarily dependent on aligned distributions of the different constituent modalities. Existing approaches generate latent embeddings for each modality in a joint fashion by representing them in a common manifold. However these joint embedding spaces fail to sufficiently reduce the modality gap, which affects the performance in downstream tasks. We hypothesize that these embeddings retain the intra-class relationships but are unable to preserve the inter-class dynamics. In this paper, we present a novel framework COBRA that aims to train two modalities (image and text) in a joint fashion inspired by the Contrastive Predictive Coding (CPC) and Noise Contrastive Estimation (NCE) paradigms which preserve both inter and intra-class relationships. We empirically show that this framework reduces the modality gap significantly and generates a robust and task agnostic joint-embedding space. We outperform existing work on four diverse downstream tasks spanning across seven benchmark cross-modal datasets.
We tackle the crucial challenge of fusing different modalities of features for multimodal sentiment analysis. Mainly based on neural networks, existing approaches largely model multimodal interactions in an implicit and hard-to-understand manner. We address this limitation with inspirations from quantum theory, which contains principled methods for modeling complicated interactions and correlations. In our quantum-inspired framework, the word interaction within a single modality and the interaction across modalities are formulated with superposition and entanglement respectively at different stages. The complex-valued neural network implementation of the framework achieves comparable results to state-of-the-art systems on two benchmarking video sentiment analysis datasets. In the meantime, we produce the unimodal and bimodal sentiment directly from the model to interpret the entangled decision.