No Arabic abstract
There are a wide range of applications that involve multi-modal data, such as cross-modal retrieval, visual question-answering, and image captioning. Such applications are primarily dependent on aligned distributions of the different constituent modalities. Existing approaches generate latent embeddings for each modality in a joint fashion by representing them in a common manifold. However these joint embedding spaces fail to sufficiently reduce the modality gap, which affects the performance in downstream tasks. We hypothesize that these embeddings retain the intra-class relationships but are unable to preserve the inter-class dynamics. In this paper, we present a novel framework COBRA that aims to train two modalities (image and text) in a joint fashion inspired by the Contrastive Predictive Coding (CPC) and Noise Contrastive Estimation (NCE) paradigms which preserve both inter and intra-class relationships. We empirically show that this framework reduces the modality gap significantly and generates a robust and task agnostic joint-embedding space. We outperform existing work on four diverse downstream tasks spanning across seven benchmark cross-modal datasets.
While supervised learning has enabled great progress in many applications, unsupervised learning has not seen such widespread adoption, and remains an important and challenging endeavor for artificial intelligence. In this work, we propose a universal unsupervised learning approach to extract useful representations from high-dimensional data, which we call Contrastive Predictive Coding. The key insight of our model is to learn such representations by predicting the future in latent space by using powerful autoregressive models. We use a probabilistic contrastive loss which induces the latent space to capture information that is maximally useful to predict future samples. It also makes the model tractable by using negative sampling. While most prior work has focused on evaluating representations for a particular modality, we demonstrate that our approach is able to learn useful representations achieving strong performance on four distinct domains: speech, images, text and reinforcement learning in 3D environments.
Multi-modal clustering, which explores complementary information from multiple modalities or views, has attracted peoples increasing attentions. However, existing works rarely focus on extracting high-level semantic information of multiple modalities for clustering. In this paper, we propose Contrastive Multi-Modal Clustering (CMMC) which can mine high-level semantic information via contrastive learning. Concretely, our framework consists of three parts. (1) Multiple autoencoders are optimized to maintain each modalitys diversity to learn complementary information. (2) A feature contrastive module is proposed to learn common high-level semantic features from different modalities. (3) A label contrastive module aims to learn consistent cluster assignments for all modalities. By the proposed multi-modal contrastive learning, the mutual information of high-level features is maximized, while the diversity of the low-level latent features is maintained. In addition, to utilize the learned high-level semantic features, we further generate pseudo labels by solving a maximum matching problem to fine-tune the cluster assignments. Extensive experiments demonstrate that CMMC has good scalability and outperforms state-of-the-art multi-modal clustering methods.
Contrastive representation learning has shown to be effective to learn representations from unlabeled data. However, much progress has been made in vision domains relying on data augmentations carefully designed using domain knowledge. In this work, we propose i-Mix, a simple yet effective domain-agnostic regularization strategy for improving contrastive representation learning. We cast contrastive learning as training a non-parametric classifier by assigning a unique virtual class to each data in a batch. Then, data instances are mixed in both the input and virtual label spaces, providing more augmented data during training. In experiments, we demonstrate that i-Mix consistently improves the quality of learned representations across domains, including image, speech, and tabular data. Furthermore, we confirm its regularization effect via extensive ablation studies across model and dataset sizes. The code is available at https://github.com/kibok90/imix.
Often we wish to transfer representational knowledge from one neural network to another. Examples include distilling a large network into a smaller one, transferring knowledge from one sensory modality to a second, or ensembling a collection of models into a single estimator. Knowledge distillation, the standard approach to these problems, minimizes the KL divergence between the probabilistic outputs of a teacher and student network. We demonstrate that this objective ignores important structural knowledge of the teacher network. This motivates an alternative objective by which we train a student to capture significantly more information in the teachers representation of the data. We formulate this objective as contrastive learning. Experiments demonstrate that our resulting new objective outperforms knowledge distillation and other cutting-edge distillers on a variety of knowledge transfer tasks, including single model compression, ensemble distillation, and cross-modal transfer. Our method sets a new state-of-the-art in many transfer tasks, and sometimes even outperforms the teacher network when combined with knowledge distillation. Code: http://github.com/HobbitLong/RepDistiller.
Recent work learns contextual representations of source code by reconstructing tokens from their context. For downstream semantic understanding tasks like summarizing code in English, these representations should ideally capture program functionality. However, we show that the popular reconstruction-based BERT model is sensitive to source code edits, even when the edits preserve semantics. We propose ContraCode: a contrastive pre-training task that learns code functionality, not form. ContraCode pre-trains a neural network to identify functionally similar variants of a program among many non-equivalent distractors. We scalably generate these variants using an automated source-to-source compiler as a form of data augmentation. Contrastive pre-training improves JavaScript summarization and TypeScript type inference accuracy by 2% to 13%. We also propose a new zero-shot JavaScript code clone detection dataset, showing that ContraCode is both more robust and semantically meaningful. On it, we outperform RoBERTa by 39% AUROC in an adversarial setting and up to 5% on natural code.