Do you want to publish a course? Click here

Variable stars in Local Group Galaxies -- V. The fast and early evolution of the low-mass Eridanus II dSph galaxy

111   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study of the variable star population of Eridanus II (Eri II), an ultra-faint dwarf galaxy that lies close to the Milky Way virial radius. We analyze multi-epoch $g,r,i$ ground-based data from Goodman and the Dark Energy Camera, plus $F475W, F606W, F814W$ space data from the Advanced Camera for Surveys. We report the detection of 67 RR Lyrae (RRL) stars and 2 Anomalous Cepheids, most of them new discoveries. With the RRL stars, we measure the distance modulus of Eri II, $mu_0=22.84pm 0.05$ mag (D$_{odot}=370pm9$ kpc) and derive a metallicity spread of 0.3 dex (0.2 dex intrinsic). The colour distribution of the horizontal branch (HB) and the period distribution of the RRL stars can be nicely reproduced by a combination of two stellar models of [Fe/H]=($-2.62$, $-2.14$). The overall low metallicity is consistent with the red giant branch bump location, 0.65 mag brighter than the HB. These results are in agreement with previous spectroscopic studies. The more metal-rich RRL and the RRab stars have greater central concentration than the more metal-poor RRL and the RRc stars that are mainly located outside $sim 1$ r$_{rm h}$. This is similar to what is found in larger dwarf galaxies such as Sculptor, and in agreement with an outside-in galaxy formation scenario. This is remarkable in such a faint dwarf galaxy with an apparently single and extremely short ($<1$ Gyr) star formation burst. Finally, we have derived new and independent structural parameters for Eri II and its star cluster using our new data that are in very good agreement with previous estimates.



rate research

Read More

Dwarf galaxies in the Local Group (LG) represent a distinct as well as diverse family of tracers of the earliest phases of galaxy assembly and the processing resulting from galactic harassment. Their stellar populations can be resolved and used as probes of the evolution of their host galaxy. In this regard, we present the first reconstruction of the star formation history (SFH) of them using the most evolved AGB stars that are long period variable (LPV). For the nearby, relatively massive and interacting gas-rich dwarf galaxies, the Magellanic Clouds, we found that the bulk of the stars formed ~ 10 Gyr ago for the LMC, while the strongest episode of star formation in the SMC occurred a few Gyr later. A peak in star formation around 0.7 Gyr ago in both Clouds is likely linked to their recent interaction. The Andromeda satellite pair NGC147/185 show different histories; the main epoch of star formation for NGC 185 occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate (SFR). In the case of NGC 147, the SFR peaked only 6.9 Gyr ago, staying intense until ~ 3 Gyr ago. Star formation in the isolated gas-rich dwarf galaxy IC 1613 has proceeded at a steady rate over the past 5 Gyr, without any particular dominant epoch. Due to lack of sufficient data, we have conducted an optical monitoring survey at the Isaac Newton Telescope (INT) of 55 dwarf galaxies in the LG to reconstruct the SFH of them uniformly. The observations are made over ten epochs, spaced approximately three months apart, as the luminosity of LPV stars varies on timescales of months to years. The system of galactic satellites of the large Andromeda spiral galaxy (M31) forms one of the key targets of our monitoring survey. We present the first results in the And I dwarf galaxy, where we discovered 116 LPVs among over 10,000 stars.
Time series observations of a single dithered field centered on the diffuse dwarf satellite galaxy Crater II were obtained with the Dark Energy Camera (DECam) at the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory, Chile, uniformly covering up to two half-light radii. Analysis of the $g$ and $i$ time series results in the identification and characterization of 130 periodic variable stars, including 98 RR Lyrae stars, 7 anomalous Cepheids, and 1 SX Phoenicis star belonging to the Crater II population, and 24 foreground variables of different types. Using the large number of ab-type RR Lyrae stars present in the galaxy, we obtained a distance modulus to Crater II of $(m-M)_0=20.333pm 0.004$ (stat) $pm 0.07$ (sys). The distribution of the RR Lyrae stars suggests an elliptical shape for Crater II, with an ellipticity of 0.24 and a position angle of $153^circ$. From the RR Lyrae stars we infer a small metallicity dispersion for the old population of Crater II of only 0.17 dex. There are hints that the most metal-poor stars in that narrow distribution have a wider distribution across the galaxy, while the slightly more metal rich part of the population is more centrally concentrated. Given the features in the color-magnitude diagram of Crater II, the anomalous Cepheids in this galaxy must have formed through a binary evolution channel of an old population.
Preliminary results of the ongoing search for symbiotic binary stars in the Local Group of Galaxies are presented and discussed.
This paper is based on the multi-band VST Early-type GAlaxy Survey (VEGAS) with the VLT Survey Telescope (VST). We present new deep photometry of the IC1459 group in g and r band. The main goal of this work is to investigate the photometric properties of the IC1459 group, and to compare our results with those obtained for other galaxy groups studied in VEGAS, in order to provide a first view of the variation of their properties as a function of the evolution of the system. For all galaxies in the IC1459 group, we fit isophotes and extract the azimuthally-averaged surface-brightness profiles, the position angle and ellipticity profiles as a function of the semi-major axis, as well as the average colour profile. In each band, we estimate the total magnitudes, effective radii, mean colour, and total stellar mass for each galaxies in the group. Then we look at the structure of the brightest galaxies and faint features in their outskirts, considering also the intragroup component. The wide field of view, long integration time, high angular resolution, and arcsec-level seeing of OmegaCAM@VST allow us to map the light distribution of IC1459 down to a surface brightness level of 29.26 mag arcsec^{-2} in g band and 28.85 mag arcsec^{-2} in r band, and out to 7-10 Re, and to detect the optical counterpart of HI gas around IC1459. We also explore in depth three low density environments and provide information to understand how galaxies and groups properties change with the group evolution stage. There is a good agreement of our results with predictions of numerical simulations regarding the structural properties of the brightest galaxies of the groups. We suggest that the structure of the outer envelope of the BCGs, the intra-group light and the HI amount and distribution may be used as indicators of the different evolutionary stage and mass assembly in galaxy groups.
According to star formation histories (SFHs), Local Group dwarf galaxies can be broadly classified in two types: those forming most of their stars before $z=2$ (${it fast}$) and those with more extended SFHs (${it slow}$). The most precise SFHs are usually derived from deep but not very spatially extended photometric data; this might alter the ratio of old to young stars when age gradients are present. Here we correct for this effect and derive the mass formed in stars by $z=2$ for a sample of 16 Local Group dwarf galaxies. We explore early differences between ${it fast}$ and ${it slow}$ dwarfs, and evaluate the impact of internal feedback by supernovae (SN) on the baryonic and dark matter (DM) component of the dwarfs. ${it Fast}$ dwarfs assembled more stellar mass at early times and have larger amounts of DM within the half-light radius than ${it slow}$ dwarfs. By imposing that ${it slow}$ dwarfs cannot have lost their gas by $z=2$, we constrain the maximum coupling efficiency of SN feedback to the gas and to the DM to be $sim$10%. We find that internal feedback alone appears insufficient to quench the SFH of ${it fast}$ dwarfs by gas deprivation, in particular for the fainter systems. Nonetheless, SN feedback can core the DM halo density profiles relatively easily, producing cores of the sizes of the half-light radius in ${it fast}$ dwarfs by $z=2$ with very low efficiencies. Amongst the classical Milky Way satellites, we predict that the smallest cores should be found in Draco and Ursa Minor, while Sculptor and Fornax should host the largest ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا