No Arabic abstract
We introduce a novel model of multipartite entanglement based on topological links, generalizing the graph/hypergraph entropy cone program. We demonstrate that there exist link representations of entropy vectors which provably cannot be represented by graphs or hypergraphs. Furthermore, we show that the contraction map proof method generalizes to the topological setting, though now requiring oracular solutions to well-known but difficult problems in knot theory.
We demonstrate that multipartite entanglement is able to characterize one-dimensional symmetry-protected topological order, which is witnessed by the scaling behavior of the quantum Fisher information of the ground state with respect to the spin operators defined in the dual lattice. We investigate an extended Kitaev chain with a $mathbf{Z}$ symmetry identified equivalently by winding numbers and paired Majorana zero modes at each end. The topological phases with high winding numbers are detected by the scaling coefficient of the quantum Fisher information density with respect to generators in different dual lattices. Containing richer properties and more complex structures than bipartite entanglement, the dual multipartite entanglement of the topological state has promising applications in robust quantum computation and quantum metrology, and can be generalized to identify topological order in the Kitaev honeycomb model.
We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically-tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and results in an enhancement of the entanglement by a factor square root of N.
Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to solve this problem both in single entanglement and network scenarios. We firstly propose a local model for characterizing all entangled states that are breaking for losing particles. This implies a simple criterion for witnessing single entanglement such as generalized GHZ states and Dicke states. It further provides an efficient witness for characterizing entangled quantum networks depending mainly on the connectivity of network configurations such as $k$-independent quantum networks, completely connected quantum networks, and $k$-connected quantum networks. These networks are universal resources for measurement-based quantum computations. The strong nonlocality can be finally verified by using nonlinear inequalities. These results show distinctive features of both single entangled systems and entangled quantum networks.
Quantum entanglement between an arbitrary number of remote qubits is examined analytically. We show that there is a non-probabilistic way to address in one context the management of entanglement of an arbitrary number of mixed-state qubits by engaging quantitative measures of entanglement and a specific external control mechanism. Both all-party entanglement and weak inseparability are considered. We show that for $Nge4$, the death of all-party entanglement is permanent after an initial collapse. In contrast, weak inseparability can be deterministically managed for an arbitrarily large number of qubits almost indefinitely. Our result suggests a picture of the path that the system traverses in the Hilbert space.
The generation of genuine multipartite entangled states is challenging in practice. Here we explore a new route to this task, via autonomous entanglement engines which use only incoherent coupling to thermal baths and time-independent interactions. We present a general machine architecture, which allows for the generation of a broad range of multipartite entangled states in a heralded manner. Specifically, given a target multiple-qubit state, we give a sufficient condition ensuring that it can be generated by our machine. We discuss the cases of Greenberger-Horne-Zeilinger, Dicke and cluster states in detail. These results demonstrate the potential of purely thermal resources for creating multipartite entangled states useful for quantum information processing.