Do you want to publish a course? Click here

A stable 2 W continuous-wave 261.5 nm laser for cooling and trapping aluminum monochloride

113   0   0.0 ( 0 )
 Added by Jamie Shaw
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a high-power tunable deep-ultraviolet (DUV) laser that uses two consecutive cavity enhanced doubling stages with LBO and CLBO crystals to produce the fourth harmonic of an amplified homebuilt external cavity diode laser. The system generates up to 2.75 W of 261.5 nm laser light with a ~2 W stable steady-state output power and performs second harmonic generation in a largely unexplored high intensity regime in CLBO for continuous wave DUV light. We use this laser to perform fluorescence spectroscopy on the $X^1Sigmaleftarrow A^1Pi$ transition in a cold, slow beam of AlCl molecules and probe the $A^{1} Pi|v=0,~J=1>$ state hyperfine structure for future laser cooling and trapping experiments. This work demonstrates that the production of tunable, watt-level DUV lasers is becoming routine for a variety of wavelength-specific applications in atomic, molecular and optical physics.



rate research

Read More

A Watt-level continuous and single frequency blue laser at 461 nm is obtained by frequency-doubling an amplified diode laser operating at 922 nm via a LBO crystal in a resonant Fabry-P{e}rot cavity. We achieved a best optical conversion efficiency equal to 87% with more than 1 W output power in the blue, and limited by the available input power. The frequency-converted beam is characterized in terms of long term power stability, residual intensity noise, and geometrical shape. The blue beam has a linewidth of the order of 1 MHz, and we used it to magneto-optically trap $^{88}$Sr atoms on the 5s$^{2},^{1}$S$_0$ -- 5s5p$,^{1}$P$_1$ transition. The low-finesse, linear-cavity doubling system is very robust, maintains the lock for several days, and is compatible with a tenfold increase of the power levels which could be obtained with fully-fibered amplifiers and large mode area fibers.
It has recently been shown that optical reflection gratings fabricated directly into an atom chip provide a simple and effective way to trap and cool substantial clouds of atoms [1,2]. In this article we describe how the gratings are designed and micro-fabricated and we characterise their optical properties, which determine their effectiveness as a cold atom source. We use simple scalar diffraction theory to understand how the morphology of the gratings determines the power in the diffracted beams.
Ultracold CH radicals promise a fruitful testbed for probing quantum-state controllable organic chemistry. In this work, we calculate CH vibrational branching ratios (VBRs) and rotational branching ratios (RBRs) with ground state mixing. We subsequently use these values to inform optical cycling proposals and consider two possible radiative cooling schemes using the $X^{2}Pi leftarrow A^{2}Delta$ and $X^{2}Pi leftarrow B^{2}Sigma^{-}$ transitions. As a first step towards laser cooled CH, we characterize the effective buffer gas cooling of this species and produce $sim5times10^{10}$ CH molecules per pulse with a rotational temperature of 2(1) K and a translational temperature of 7(2) K. We also determine the CH-helium collisional cross section to be $2.4(8)times10^{-14}$ cm$^{2}$. This value is crucial to correctly account for collisional broadening and accurately extract the in-cell CH density. These cold CH molecules mark an ideal starting point for future laser cooling and trapping experiments and tests of cold organic chemistry.
We report the first investigation on continuous-wave Raman lasing in high-quality-factor aluminum nitride (AlN) microring resonators. Although wurtzite AlN is known to exhibit six Raman-active phonons, single-mode Raman lasing with low threshold and high slope efficiency is demonstrated. Selective excitation of A$_1^mathrm{TO}$ and E$_2^mathrm{high}$ phonons with Raman shifts of $sim$612 and 660 cm$^{-1}$ is observed by adjusting the polarization of the pump light. A theoretical analysis of Raman scattering efficiency within ${c}$-plane (0001) of AlN is carried out to help account for the observed lasing behavior. Bidirectional lasing is experimentally confirmed as a result of symmetric Raman gain in micro-scale waveguides. Furthermore, second-order Raman lasing with unparalleled output power of $sim$11.3 mW is obtained, which offers the capability to yield higher order Raman lasers for mid-infrared applications.
This work reports single-frequency laser oscillation at 1003.4 nm of an optically pumped external cavity semiconductor laser. By using a gain structure bonded onto a high conductivity substrate, we demonstrate both theoretically and experimentally the strong reduction of the thermal resistance of the active semiconductor medium, resulting in a high power laser emission. The spectro-temporal dynamics of the laser is also explained. Furthermore, an intracavity frequency-doubling crystal was used to obtain a stable single-mode generation of blue (501.5 nm) with an output power around 60 mW.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا