No Arabic abstract
This paper develops a novel self-training U-net (STU-net) based method for the automated WPC model generation without requiring data pre-processing. The self-training (ST) process of STU-net has two steps. First, different from traditional studies regarding the WPC modeling as a curve fitting problem, in this paper, we renovate the WPC modeling formulation from a machine vision aspect. To develop sufficiently diversified training samples, we synthesize supervisory control and data acquisition (SCADA) data based on a set of S-shape functions depicting WPCs. These synthesized SCADA data and WPC functions are visualized as images and paired as training samples(I_x, I_wpc). A U-net is then developed to approximate the model recovering I_wpc from I_x. The developed U-net is applied into observed SCADA data and can successfully generate the I_wpc. Moreover, we develop a pixel mapping and correction process to derive a mathematical form f_wpc representing I_wpcgenerated previously. The proposed STU-net only needs to train once and does not require any data preprocessing in applications. Numerical experiments based on 76 WTs are conducted to validate the superiority of the proposed method by benchmarking against classical WPC modeling methods. To demonstrate the repeatability of the presented research, we release our code at https://github.com/IkeYang/STU-net.
View synthesis aims to produce unseen views from a set of views captured by two or more cameras at different positions. This task is non-trivial since it is hard to conduct pixel-level matching among different views. To address this issue, most existing methods seek to exploit the geometric information to match pixels. However, when the distinct cameras have a large baseline (i.e., far away from each other), severe geometry distortion issues would occur and the geometric information may fail to provide useful guidance, resulting in very blurry synthesized images. To address the above issues, in this paper, we propose a novel deep generative model, called Self-Consistent Generative Network (SCGN), which synthesizes novel views from the given input views without explicitly exploiting the geometric information. The proposed SCGN model consists of two main components, i.e., a View Synthesis Network (VSN) and a View Decomposition Network (VDN), both employing an Encoder-Decoder structure. Here, the VDN seeks to reconstruct input views from the synthesized novel view to preserve the consistency of view synthesis. Thanks to VDN, SCGN is able to synthesize novel views without using any geometric rectification before encoding, making it easier for both training and applications. Finally, adversarial loss is introduced to improve the photo-realism of novel views. Both qualitative and quantitative comparisons against several state-of-the-art methods on two benchmark tasks demonstrated the superiority of our approach.
Failure detection is employed in the industry to improve system performance and reduce costs due to unexpected malfunction events. So, a good dataset of the system is desirable for designing an automated failure detection system. However, industrial process datasets are unbalanced and contain little information about failure behavior due to the uniqueness of these events and the high cost for running the system just to get information about the undesired behaviors. For this reason, performing correct training and validation of automated failure detection methods is challenging. This paper proposes a methodology called FaultFace for failure detection on Ball-Bearing joints for rotational shafts using deep learning techniques to create balanced datasets. The FaultFace methodology uses 2D representations of vibration signals denominated faceportraits obtained by time-frequency transformation techniques. From the obtained faceportraits, a Deep Convolutional Generative Adversarial Network is employed to produce new faceportraits of the nominal and failure behaviors to get a balanced dataset. A Convolutional Neural Network is trained for fault detection employing the balanced dataset. The FaultFace methodology is compared with other deep learning techniques to evaluate its performance in for fault detection with unbalanced datasets. Obtained results show that FaultFace methodology has a good performance for failure detection for unbalanced datasets.
Vision-based prediction algorithms have a wide range of applications including autonomous driving, surveillance, human-robot interaction, weather prediction. The objective of this paper is to provide an overview of the field in the past five years with a particular focus on deep learning approaches. For this purpose, we categorize these algorithms into video prediction, action prediction, trajectory prediction, body motion prediction, and other prediction applications. For each category, we highlight the common architectures, training methods and types of data used. In addition, we discuss the common evaluation metrics and datasets used for vision-based prediction tasks. A database of all the information presented in this survey including, cross-referenced according to papers, datasets and metrics, can be found online at https://github.com/aras62/vision-based-prediction.
Seismic inverse modeling is a common method in reservoir prediction and it plays a vital role in the exploration and development of oil and gas. Conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological mode and its uncertainty is difficult to be assessed. The paper proposes an inversion modeling method based on GAN consistent with geology, well logs, seismic data. GAN is a the most promising generation model algorithm that extracts spatial structure and abstract features of training images. The trained GAN can reproduce the models with specific mode. In our test, 1000 models were generated in 1 second. Based on the trained GAN after assessment, the optimal result of models can be calculated through Bayesian inversion frame. Results show that inversion models conform to observation data and have a low uncertainty under the premise of fast generation. This seismic inverse modeling method increases the efficiency and quality of inversion iteration. It is worthy of studying and applying in fusion of seismic data and geological knowledge.
We present a deep generative scene modeling technique for indoor environments. Our goal is to train a generative model using a feed-forward neural network that maps a prior distribution (e.g., a normal distribution) to the distribution of primary objects in indoor scenes. We introduce a 3D object arrangement representation that models the locations and orientations of objects, based on their size and shape attributes. Moreover, our scene representation is applicable for 3D objects with different multiplicities (repetition counts), selected from a database. We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation. We demonstrate the effectiveness of our scene representation and the deep learning method on benchmark datasets. We also show the applications of this generative model in scene interpolation and scene completion.