Do you want to publish a course? Click here

Path-integral approach to the thermodynamics of bosons with memory: Density and correlation functions

75   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Expanding upon previous work, using the path-integral formalism we derive expressions for the one-particle reduced density matrix and the two-point correlation function for a quadratic system of bosons that interact through a general class of memory kernels. The results are applied to study the density, condensate fraction and pair correlation function of trapped bosons harmonically coupled to external distinguishable masses.



rate research

Read More

For a system of bosons that interact through a class of general memory kernels, a recurrence relation for the partition function is derived within the path-integral formalism. This approach provides a generalization to previously known treatments in the literature of harmonically coupled systems of identical particles. As an example the result is applied to the specific heat of a simplified model of an open quantum system of bosons, harmonically coupled to a reservoir of distinguishable fictitious masses.
Trapped Bosons exhibit fundamental physical phenomena and are potentially useful for quantum technologies. We present a method for simulating Bosons using path integral molecular dynamics. A main challenge for simulations is including all permutations due to exchange symmetry. We show that evaluation of the potential can be done recursively, avoiding explicit enumeration of permutations, and scales cubically with system size. The method is applied to Bosons in a 2D trap and agrees with essentially exact results. An analysis of the role of exchange with decreasing temperature is also presented.
We study the thermodynamics of short-range interacting, two-dimensional bosons constrained to the lowest Landau level. When the temperature is higher than other energy scales of the problem, the partition function reduces to a multidimensional complex integral that can be handled by classical Monte Carlo techniques. This approach takes the quantization of the lowest Landau level orbits fully into account. We observe that the partition function can be expressed in terms of a function of a single combination of thermodynamic variables, which allows us to derive exact thermodynamic relations. We determine the asymptotic behavior of this function and compute some thermodynamic observables numerically.
We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of the classical van der Waals theory to quantum statistical systems. As an example, we apply the van der Waals fluid with fermi statistics to characterize the liquid-gas critical point in nuclear matter. We also introduce the Bose-Einstein condensation in the relativistic van der Waals boson gas, and argue, that it exhibits two-phase structure separated in space.
339 - Y. Y. Atas , A. Safavi-Naini , 2020
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are applicable to a wide range of systems including an ideal gas of spinless fermions in one dimension (1D), the Tonks-Girardeau (TG) gas of hard-core bosons, as well as a 1D gas of hard-core anyons. In order to illustrate the utility of our approach, we focus on the TG gas confined to an arbitrary time-dependent trapping potential. In particular, we use the determinant representation of the many-body wave function to characterize the nonequilibrium thermodynamics of the TG gas and obtain exact and computationally tractable expressions---in terms of Fredholm determinants---for the mean work, the work probability distribution function, the nonadiabaticity parameter, and the Loschmidt amplitude. When applied to a harmonically trapped TG gas, our results for the mean work and the nonadiabaticity parameter reduce to those derived previously using an alternative approach. We next propose to use periodic modulation of the trap frequency in order to drive the system to highly non-equilibrium states by taking advantage of the phenomenon of parametric resonance. Under such driving protocol, the nonadiabaticity parameter may reach large values, which indicates a large amount of irreversible work being done on the system as compared to sudden quench protocols considered previously. This scenario is realizable in ultracold atom experiments, aiding fundamental understanding of all thermodynamic properties of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا