No Arabic abstract
We develop a general approach for calculating the characteristic function of the work distribution of quantum many-body systems in a time-varying potential, whose many-body wave function can be cast in the Slater determinant form. Our results are applicable to a wide range of systems including an ideal gas of spinless fermions in one dimension (1D), the Tonks-Girardeau (TG) gas of hard-core bosons, as well as a 1D gas of hard-core anyons. In order to illustrate the utility of our approach, we focus on the TG gas confined to an arbitrary time-dependent trapping potential. In particular, we use the determinant representation of the many-body wave function to characterize the nonequilibrium thermodynamics of the TG gas and obtain exact and computationally tractable expressions---in terms of Fredholm determinants---for the mean work, the work probability distribution function, the nonadiabaticity parameter, and the Loschmidt amplitude. When applied to a harmonically trapped TG gas, our results for the mean work and the nonadiabaticity parameter reduce to those derived previously using an alternative approach. We next propose to use periodic modulation of the trap frequency in order to drive the system to highly non-equilibrium states by taking advantage of the phenomenon of parametric resonance. Under such driving protocol, the nonadiabaticity parameter may reach large values, which indicates a large amount of irreversible work being done on the system as compared to sudden quench protocols considered previously. This scenario is realizable in ultracold atom experiments, aiding fundamental understanding of all thermodynamic properties of the system.
Describing finite-temperature nonequilibrium dynamics of interacting many-particle systems is a notoriously challenging problem in quantum many-body physics. Here we provide an exact solution to this problem for a system of strongly interacting bosons in one dimension in the Tonks-Girardeau regime of infinitely strong repulsive interactions. Using the Fredholm determinant approach and the Bose-Fermi mapping we show how the problem can be reduced to a single-particle basis, wherein the finite-temperature effects enter the solution via an effective dressing of the single-particle wavefunctions by the Fermi-Dirac occupation factors. We demonstrate the utility of our approach and its computational efficiency in two nontrivial out-of-equilibrium scenarios: collective breathing mode oscillations in a harmonic trap and collisional dynamics in the Newtons cradle setting involving real-time evolution in a periodic Bragg potential.
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas in the Tonks-Girardeau (TG) or hard-core limit, after a trap quench from a double well to a single well. On the analytical side, thequadratic nature of the theory of QGHD is complemented with the emerging conformal invarianceat the TG point to fix the universal part of those quantities. Moreover, the well-known mapping ofhard-core bosons to free fermions, allows to use a generalized form of the Fisher-Hartwig conjectureto fix the non-trivial spacetime dependence of the ultraviolet cutoff in the entanglement entropy. Thefree nature of the TG gas also allows for more accurate results on the numerical side, where a highernumber of particles as compared to the interacting case can be simulated. The agreement betweenanalytical and numerical predictions is extremely good. For the density fluctuations, however, onehas to average out large Friedel oscillations present in the numerics to recover such agreement.
We study the local correlations in the super Tonks-Girardeau gas, a highly excited, strongly correlated state obtained in quasi one-dimensional Bose gases by tuning the scattering length to large negative values using a confinement-induced resonance. Exploiting a connection with a relativistic field theory, we obtain results for the two-body and three-body local correlators at zero and finite temperature. At zero temperature our result for the three-body correlator agrees with the extension of the results of Cheianov et al. [Phys. Rev. A 73, 051604(R) (2006)], obtained for the ground-state of the repulsive Lieb-Liniger gas, to the super Tonks-Girardeau state. At finite temperature we obtain that the three-body correlator has a weak dependence on the temperature up to the degeneracy temperature. We also find that for temperatures larger than the degeneracy temperature the values of the three-body correlator for the super Tonks-Girardeau gas and the corresponding repulsive Lieb-Liniger gas are rather similar even for relatively small couplings.
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability---a collective many-body bounce effect. The effect, while being invisible in the evolution of the in-situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure of the gas during the isentropic compression, which acts as a potential barrier at the inner turning points of the breathing cycle.
We study a one dimensional gas of repulsively interacting ultracold bosons trapped in a double-well potential as the atom-atom interactions are tuned from zero to infinity. We concentrate on the properties of the excited states which evolve from the so-called NOON states to the NOON Tonks-Girardeau states. The relation between the latter and the Bose-Fermi mapping limit is explored. We state under which conditions NOON Tonks-Girardeau states, which are not predicted by the Bose-Fermi mapping, will appear in the spectrum.