No Arabic abstract
We consider thermodynamics of the van der Waals fluid of quantum systems. We derive general relations of thermodynamic functions and parameters of any ideal gas and the corresponding van der Waals fluid. This provides unambiguous generalization of the classical van der Waals theory to quantum statistical systems. As an example, we apply the van der Waals fluid with fermi statistics to characterize the liquid-gas critical point in nuclear matter. We also introduce the Bose-Einstein condensation in the relativistic van der Waals boson gas, and argue, that it exhibits two-phase structure separated in space.
We investigate the structure and stability of Bose-Einstein condensate of $^{7}$Li atoms with realistic van der Waals interaction by using the potential harmonic expansion method. Besides the known low-density metastable solution with contact delta function interaction, we find a stable branch at a higher density which corresponds to the formation of an atomic cluster. Comparison with the results of non-local effective interaction is also presented. We analyze the effect of trap size on the transition between the two branches of solutions. We also compute the loss rate of a Bose condensate due to two- and three-body collisions.
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic many-body states in such two-dimensional materials. Pure optical studies, the most obvious way to access the phase diagram of photogenerated excitons have been elusive. We observe several criticalities in photogenerated exciton ensembles hosted in MoSe2-WSe2 heterostacks with respect to photoluminescence intensity, linewidth, and temporal coherence pointing towards the transition to a coherent quantum state. For this state, the occupation is 100 percent and the exciton diffusion length is increased. The phenomena survive above 10 kelvin, consistent with the predicted critical condensation temperature. Our study provides a first phase-diagram of many-body interlayer exciton states including Bose Einstein condensation.
The universal aspects of atom-dimer elastic collisions are investigated within the framework of Faddeev equations. The two-body interactions between the neutral atoms are approximated by the separable potential approach. Our analysis considers a pure van der Waals potential tail as well as soft-core van der Waals interactions permitting us in this manner to address the universally general features of atom-dimer resonant spectra. In particular, we show that the atom-dimer resonances are solely associated with the {it excited} Efimov states. Furthermore, the positions of the corresponding resonances for a soft-core potentials with more than 5 bound states are in good agreement with the corresponding results from an infinitely deep pure van der Waals tail potential.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Dipolar relaxation happens when one or both colliding atoms flip their spins exothermically inside a magnetic ($B$) field. This work reports precise measurements of dipolar relaxation in a Bose-Einstein condensate of ground state $^{87}$Rb atoms together with in-depth theoretical investigations. Previous perturbative treatments fail to explain our observations except at very small $B$-fields. By employing quantum defect theory based on analytic solutions of asymptotic van der Waals interaction $-C_6/R^6$ ($R$ being interatomic spacing), we significantly expand the applicable range of perturbative treatment. We find the $B$-dependent dipolar relaxation lineshapes are largely universal, determined by the coefficient $C_6$ and the associated $s$-wave scattering lengths $a_{rm sc}$ of the states before and after spin flips. This universality, which applies generally to other atomic species as well, implicates potential controls of dipolar relaxation and related cold chemical reactions by tuning $a_{rm sc}$.