Do you want to publish a course? Click here

Detecting Mitosis against Domain Shift using a Fused Detector and Deep Ensemble Classification Model for MIDOG Challenge

185   0   0.0 ( 0 )
 Added by Yubo Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mitotic figure count is an important marker of tumor proliferation and has been shown to be associated with patients prognosis. Deep learning based mitotic figure detection methods have been utilized to automatically locate the cell in mitosis using hematoxylin & eosin (H&E) stained images. However, the model performance deteriorates due to the large variation of color tone and intensity in H&E images. In this work, we proposed a two stage mitotic figure detection framework by fusing a detector and a deep ensemble classification model. To alleviate the impact of color variation in H&E images, we utilize both stain normalization and data augmentation, aiding model to learn color irrelevant features. The proposed model obtains an F1 score of 0.7550 on the preliminary testing set released by the MIDOG challenge.



rate research

Read More

411 - Xi Long , Ying Cheng , Xiao Mu 2021
We present a summary of the domain adaptive cascade R-CNN method for mitosis detection of digital histopathology images. By comprehensive data augmentation and adapting existing popular detection architecture, our proposed method has achieved an F1 score of 0.7500 on the preliminary test set in MItosis DOmain Generalization (MIDOG) Challenge at MICCAI2021.
Deep learning has become an integral part of various computer vision systems in recent years due to its outstanding achievements for object recognition, facial recognition, and scene understanding. However, deep neural networks (DNNs) are susceptible to be fooled with nearly high confidence by an adversary. In practice, the vulnerability of deep learning systems against carefully perturbed images, known as adversarial examples, poses a dire security threat in the physical world applications. To address this phenomenon, we present, what to our knowledge, is the first ever image set based adversarial defence approach. Image set classification has shown an exceptional performance for object and face recognition, owing to its intrinsic property of handling appearance variability. We propose a robust deep Bayesian image set classification as a defence framework against a broad range of adversarial attacks. We extensively experiment the performance of the proposed technique with several voting strategies. We further analyse the effects of image size, perturbation magnitude, along with the ratio of perturbed images in each image set. We also evaluate our technique with the recent state-of-the-art defence methods, and single-shot recognition task. The empirical results demonstrate superior performance on CIFAR-10, MNIST, ETH-80, and Tiny ImageNet datasets.
Since 2014, very deep convolutional neural networks have been proposed and become the must-have weapon for champions in all kinds of competition. In this report, a pipeline is introduced to perform the classification of smoking and calling by modifying the pretrained inception V3. Brightness enhancing based on deep learning is implemented to improve the classification of this classification task along with other useful training tricks. Based on the quality and quantity results, it can be concluded that this pipeline with small biased samples is practical and useful with high accuracy.
Chromosome classification is an important but difficult and tedious task in karyotyping. Previous methods only classify manually segmented single chromosome, which is far from clinical practice. In this work, we propose a detection based method, DeepACC, to locate and fine classify chromosomes simultaneously based on the whole metaphase image. We firstly introduce the Additive Angular Margin Loss to enhance the discriminative power of model. To alleviate batch effects, we transform decision boundary of each class case-by-case through a siamese network which make full use of prior knowledges that chromosomes usually appear in pairs. Furthermore, we take the clinically seven group criterion as a prior knowledge and design an additional Group Inner-Adjacency Loss to further reduce inter-class similarities. 3390 metaphase images from clinical laboratory are collected and labelled to evaluate the performance. Results show that the new design brings encouraging performance gains comparing to the state-of-the-art baselines.
123 - Yawei Luo , Liang Zheng , Tao Guan 2018
We consider the problem of unsupervised domain adaptation in semantic segmentation. The key in this campaign consists in reducing the domain shift, i.e., enforcing the data distributions of the two domains to be similar. A popular strategy is to align the marginal distribution in the feature space through adversarial learning. However, this global alignment strategy does not consider the local category-level feature distribution. A possible consequence of the global movement is that some categories which are originally well aligned between the source and target may be incorrectly mapped. To address this problem, this paper introduces a category-level adversarial network, aiming to enforce local semantic consistency during the trend of global alignment. Our idea is to take a close look at the category-level data distribution and align each class with an adaptive adversarial loss. Specifically, we reduce the weight of the adversarial loss for category-level aligned features while increasing the adversarial force for those poorly aligned. In this process, we decide how well a feature is category-level aligned between source and target by a co-training approach. In two domain adaptation tasks, i.e., GTA5 -> Cityscapes and SYNTHIA -> Cityscapes, we validate that the proposed method matches the state of the art in segmentation accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا