No Arabic abstract
5d transition metal Pt is the canonical spin Hall material for efficient generation of spin-orbit torques (SOTs) in Pt/ferromagnetic layer (FM) heterostructures. However, for a long while with tremendous engineering endeavors, the damping-like SOT efficiencies (${xi}_{DL}$) of Pt and Pt alloys are still limited to ${xi}_{DL}$<0.5. Here we present that with proper alloying elements, particularly 3d transition metals V and Cr, the strength of the high spin Hall conductivity of Pt (${sigma}_{SH}{sim}6.45{times}10^{5}({hbar}/2e){Omega}^{-1}{cdot} m^{-1}$) can be developed. Especially for the Cr-doped case, an extremely high ${xi}_{DL}{sim}0.9$ in a Pt$_{0.69}$Cr$_{0.31}$/Co device can be achieved with a moderate Pt$_{0.69}$Cr$_{0.31}$ resistivity of ${rho}_{xx}{sim}133 {mu}{Omega}{cdot}cm$. A low critical SOT-driven switching current density of $J_{c}{sim}3.16{times}10^{6} A{cdot}cm^{-2}$ is also demonstrated. The damping constant (${alpha}$) of Pt$_{0.69}$Cr$_{0.31}$/FM structure is also found to be reduced to 0.052 from the pure Pt/FM case of 0.078. The overall high ${sigma}_{SH}$, giant ${xi}_{DL}$, moderate ${rho}_{xx}$, and reduced ${alpha}$ of such Pt-Cr/FM heterostructure makes it promising for versatile extremely low power consumption SOT memory applications.
We experimentally investigate spin-orbit torque and spin pumping in Y$_3$Fe$_5$O$_{12}$(YIG)/Pt bilayers with ultrathin insertion layers at the interface. An insertion layer of Cu suppresses both spin-orbit torque and spin pumping, whereas an insertion layer of Ni$_{80}$Fe$_{20}$ (permalloy, Py) enhances them, in a quantitatively consistent manner with the reciprocity of the two spin transmission processes. However, we observe a large enhancement of Gilbert damping with the insertion of Py that cannot be accounted for solely by spin pumping, suggesting significant spin-memory loss due to the interfacial magnetic layer. Our findings indicate that the magnetization at the YIG-metal interface strongly influences the transmission and depolarization of pure spin current.
Efficient generation of spin-orbit torques (SOTs) is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall conductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and spin transmissivity of the interfaces. Here we reviews recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques, and summarize progress towards the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and non-volatile.
A large anti-damping spin-obit torque (SOT) efficiency in magnetic heterostructures is a prerequisite to realize energy efficient spin torque based magnetic memories and logic devices. The efficiency can be characterized in terms of the spin-orbit fields generated by anti-damping torques when an electric current is passed through the non-magnetic layer. We report a giant spin-orbit field of 48.96 (27.50) mT at an applied current density of 1 MAcm-2 in beta-W interfaced Co60Fe40 (Ni81Fe19)/TiN epitaxial structures due to an anti-damping like torque, which results in a magnetization auto-oscillation current density as low as 1.68(3.27) MAcm-2. The spin-orbit field value increases with decrease of beta-W layer thickness, which affirms that epitaxial surface states are responsible for the extraordinary large efficiency. SOT induced energy efficient in-plane magnetization switching in large 20x100 um2 structures has been demonstrated by Kerr microscopy and the findings are supported by results from micromagnetic simulations. The observed giant SOT efficiencies in the studied all-epitaxial heterostructures are comparable to values reported for topological insulators. These results confirm that by utilizing epitaxial material combinations an extraordinary large SOT efficiency can be achieved using semiconducting industry compatible 5d heavy metals, which provides immediate solutions for the realization of energy efficient spin-logic devices.
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the thickness of the ferromagnetic layer, sizable effect has only been realized in bilayers with an ultrathin ferromagnetic layer. Here we demonstrate that, by stacking ultrathin Pt and FeMn alternately, both ferromagnetic properties and current induced spin-orbit torque can be achieved in FeMn/Pt multilayers without any constraint on its total thickness. The critical behavior of these multilayers follows closely three-dimensional Heisenberg model with a finite Curie temperature distribution. The spin torque effective field is about 4 times larger than that of NiFe/Pt bilayer with a same equivalent NiFe thickness. The self-current generated spin torque is able to switch the magnetization reversibly without the need for an external field or a thick heavy metal layer. The removal of both thickness constraint and necessity of using an adjacent heavy metal layer opens new possibilities for exploiting spin-orbit torque for practical applications.
Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains unclear whether one can control the magnetic moment orientation efficiently because of the cancelled magnetic moment. Here, we report spin-orbit torque induced magnetization switching of ferrimagnetic Co1-xTbx films with perpendicular magnetic anisotropy. Current induced switching is demonstrated in all of the studied film compositions, including those near the magnetization compensation point. The spin-orbit torque induced effective field is further quantified in the domain wall motion regime. A divergent behavior that scales with the inverse of magnetic moment is confirmed close to the compensation point, which is consistent with angular momentum conservation. Moreover, we also quantify the Dzyaloshinskii-Moriya interaction energy in the Ta/Co1-xTbx system and we find that the energy density increases as a function of the Tb concentration. The demonstrated spin-orbit torque switching, in combination with the fast magnetic dynamics and minimal net magnetization of ferrimagnetic alloys, promises spintronic devices that are faster and with higher density than traditional ferromagnetic systems.