No Arabic abstract
A large anti-damping spin-obit torque (SOT) efficiency in magnetic heterostructures is a prerequisite to realize energy efficient spin torque based magnetic memories and logic devices. The efficiency can be characterized in terms of the spin-orbit fields generated by anti-damping torques when an electric current is passed through the non-magnetic layer. We report a giant spin-orbit field of 48.96 (27.50) mT at an applied current density of 1 MAcm-2 in beta-W interfaced Co60Fe40 (Ni81Fe19)/TiN epitaxial structures due to an anti-damping like torque, which results in a magnetization auto-oscillation current density as low as 1.68(3.27) MAcm-2. The spin-orbit field value increases with decrease of beta-W layer thickness, which affirms that epitaxial surface states are responsible for the extraordinary large efficiency. SOT induced energy efficient in-plane magnetization switching in large 20x100 um2 structures has been demonstrated by Kerr microscopy and the findings are supported by results from micromagnetic simulations. The observed giant SOT efficiencies in the studied all-epitaxial heterostructures are comparable to values reported for topological insulators. These results confirm that by utilizing epitaxial material combinations an extraordinary large SOT efficiency can be achieved using semiconducting industry compatible 5d heavy metals, which provides immediate solutions for the realization of energy efficient spin-logic devices.
The giant spin Hall effect in magnetic heterostructures along with low spin memory loss and high interfacial spin mixing conductance are prerequisites to realize energy efficient spin torque based logic devices. We report giant spin Hall angle (SHA) of 28.67 (5.09) for W (Ta) interfaced epi- Co60Fe40/TiN structures. The spin-orbit torque switching current density (J_Crit) is as low as 1.82 (8.21) MA/cm2 in W (Ta)/Co60Fe40(t_CoFe)/TiN structures whose origin lies in the epitaxial interfaces. These structures also exhibit very low spin memory loss and high spin mixing conductance. These extraordinary values of SHA and therefore ultra-low J_Crit in semiconducting industry compatible epitaxial materials combinations open up a new direction for the realization of energy efficient spin logic devices by utilizing epitaxial interfaces.
We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field ({Delta}H_L) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field ({Delta}H_T) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of {Delta}H_L observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while {Delta}H_T shows the same sign with a small magnitude. The opposite directions of {Delta}HL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.
The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path towards high-performance, non-volatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires harnessing both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here we report the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T-MoTe2 adjacent to permalloy. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal material based spin devices.
We use time-resolved (TR) measurements based on the polar magneto-optical Kerr effect (MOKE) to study the magnetization dynamics excited by spin orbit torques in Py (Permalloy)/Pt and Ta/CoFeB bilayers. The analysis reveals that the field-like (FL) spin orbit torque (SOT) dominates the amplitude of the first oscillation cycle of the magnetization precession and the damping-like (DL) torque determines the final steady-state magnetization. In our bilayer samples, we have extracted the effective fields, hFL and hDL, of the two SOTs from the time-resolved magnetization oscillation spectrum. The extracted values are in good agreement with those extracted from time-integrated DCMOKE measurements, suggesting that the SOTs do not change at high frequencies. We also find that the amplitude ratio of the first oscillation to steady state is linearly proportional to the ratio hFL/hDL. The first oscillation amplitude is inversely proportional to, whereas the steady state value is independent of, the applied external field along the current direction.
Despite the potential advantages of information storage in antiferromagnetically coupled materials, it remains unclear whether one can control the magnetic moment orientation efficiently because of the cancelled magnetic moment. Here, we report spin-orbit torque induced magnetization switching of ferrimagnetic Co1-xTbx films with perpendicular magnetic anisotropy. Current induced switching is demonstrated in all of the studied film compositions, including those near the magnetization compensation point. The spin-orbit torque induced effective field is further quantified in the domain wall motion regime. A divergent behavior that scales with the inverse of magnetic moment is confirmed close to the compensation point, which is consistent with angular momentum conservation. Moreover, we also quantify the Dzyaloshinskii-Moriya interaction energy in the Ta/Co1-xTbx system and we find that the energy density increases as a function of the Tb concentration. The demonstrated spin-orbit torque switching, in combination with the fast magnetic dynamics and minimal net magnetization of ferrimagnetic alloys, promises spintronic devices that are faster and with higher density than traditional ferromagnetic systems.