No Arabic abstract
We investigate the hopping dynamics of a colloidal particle across a potential barrier and within a viscoelastic, i.e., non-Markovian bath, and report two clearly separated time scales in the corresponding waiting time distributions. While the longer time scale exponentially depends on the barrier height, the shorter one is similar to the relaxation time of the fluid. This short time scale is a signature of the storage and release of elastic energy inside the bath, that strongly increases the hopping rate. Our results are in excellent agreement with numerical simulations of a simple Maxwell model.
We numerically study the escape kinetics of a self-propelled Janus particle, carrying a cargo, from a meta-stable state. We assume that the cargo is attached to the Janus particle by a flexible harmonic spring. We take into account the effect of velocity field, created in the fluid due to movements of dimers components, by considering space-dependent diffusion tensor (Oseen tensor). Our simulation results show that the synchronization between barrier crossing events and rotational relaxation process can enhance escape rate to a large extent. Also, the load carrying capability of a Janus particle is largely controlled by its rotational dynamics and self-propulsion velocity. Moreover, the hydrodynamic interaction, conspicuously, enhances the escape rate of the Janus-cargo dimer. The most of the important features in escape kinetics have been justified based on the analytic arguments.
The locomotion of microorganisms and spermatozoa in complex viscoelastic fluids is of critical importance in many biological processes such as fertilization, infection, and biofilm formation. Depending on their propulsion mechanisms, microswimmers display various responses to a complex fluid environment: increasing or decreasing their swimming speed and efficiency, modifying their propulsion kinematics and swimming gaits, and experiencing different hydrodynamic interactions with their surroundings. In this article, we review the fundamental physics of locomotion of biological and synthetic microswimmers in complex viscoelastic fluids. Starting from a continuum framework, we describe the main theoretical approaches developed to model microswimming in viscoelastic fluids, which typically rely on asymptotically small dimensionless parameters. We then summarise recent progress on the mobility of single cells propelled by cilia, waving flagella and rotating helical flagella in unbounded viscoelastic fluids. We next briefly discuss the impact of other physical factors, including the micro-scale heterogeneity of complex biological fluids, the role of Brownian fluctuations of the microswimmers, the effect of polymer entanglement and the influence of shear-thinning viscosity. In particular, for solutions of long polymer chains whose sizes are comparable to the radius of flagella, continuum models cannot be used and instead Brownian Dynamics for the polymers can predict the swimming dynamics. Finally, we discuss the effect of viscoelasticity on the dynamics of microswimmers in the presence of surfaces or external flows and its impact on collective cellular behavior.
We study a granular gas of viscoelastic particles (kinetic energy loss upon collision is a function of the particles relative velocities at impact) subject to a stochastic thermostat. We show that the system displays anomalous cooling and heating rates during thermal relaxation processes, this causing the emergence of thermal memory. In particular, a significant textit{Mpemba effect} is present; i.e., an initially hotter/cooler granular gas can cool down/heat up faster than an in comparison cooler/hotter granular gas. Moreover, a textit{Kovacs effect} is also observed; i.e., a non-monotonic relaxation of the granular temperature --if the gas undergoes certain sudden temperature changes before fixing its value. Our results show that both memory effects have distinct features, very different and eventually opposed to those reported in theory for granular fluids under simpler collisional models. We study our system via three independent methods: approximate solution of the kinetic equation time evolution and computer simulations (both molecular dynamics simulations and Direct Simulation Monte Carlo method), finding good agreement between them.
A model system inspired by recent experiments on the dynamics of a folded protein under the influence of a sinusoidal force is investigated and found to replicate many of the response characteristics of such a system. The essence of the model is a strongly over-damped oscillator described by a harmonic restoring force for small displacements that reversibly yields to stress under sufficiently large displacement. This simple dynamical system also reveals unexpectedly rich behavior, exhibiting a series of dynamical transitions and analogies with equilibrium thermodynamic phase transitions. The effects of noise and of inertia are briefly considered and described.
We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at larger velocities is in qualitative agreement with macroscopic rheological experiments. The second process, observed at Weissenberg numbers as small as a few percent, appears to have no analog in macro rheological findings. A simple model introduced earlier captures the observed behavior, and implies that the two shear thinning processes correspond to two different length scales in the fluid. This model also reproduces oscillations which have been observed in this system previously. While the system under macro-shear seems to be near equilibrium for shear rates in the regime of the intermediate Newtonian-like plateau, the one under micro-shear is thus still far from it. The analysis suggests the existence of a length scale of a few micrometres, the nature of which remains elusive.