No Arabic abstract
We perform micro-rheological experiments with a colloidal bead driven through a viscoelastic worm-like micellar fluid and observe two distinctive shear thinning regimes, each of them displaying a Newtonian-like plateau. The shear thinning behavior at larger velocities is in qualitative agreement with macroscopic rheological experiments. The second process, observed at Weissenberg numbers as small as a few percent, appears to have no analog in macro rheological findings. A simple model introduced earlier captures the observed behavior, and implies that the two shear thinning processes correspond to two different length scales in the fluid. This model also reproduces oscillations which have been observed in this system previously. While the system under macro-shear seems to be near equilibrium for shear rates in the regime of the intermediate Newtonian-like plateau, the one under micro-shear is thus still far from it. The analysis suggests the existence of a length scale of a few micrometres, the nature of which remains elusive.
We study the strain response to steady imposed stress in a spatially homogeneous, scalar model for shear thickening, in which the local rate of yielding Gamma(l) of mesoscopic `elastic elements is not monotonic in the local strain l. Despite this, the macroscopic, steady-state flow curve (stress vs. strain rate) is monotonic. However, for a broad class of Gamma(l), the response to steady stress is not in fact steady flow, but spontaneous oscillation. We discuss this finding in relation to other theoretical and experimental flow instabilities. Within the parameter ranges we studied, the model does not exhibit rheo-chaos.
We discuss in this work the validity of the theoretical solution of the nonlinear Couette flow for a granular impurity obtained in a recent work [preprint arXiv:0802.0526], in the range of large inelasticity and shear rate. We show there is a good agreement between the theoretical solution and Monte Carlo simulation data, even under these extreme conditions. We also discuss an extended theoretical solution that would work for large inelasticities in ranges of shear rate $a$ not covered by our previous work (i.e., below the threshold value $a_{th}$ for which uniform shear flow may be obtained) and compare also with simulation data. Preliminary results in the simulations give useful insight in order to obtain an exact and general solution of the nonlinear Couette flow (both for $age a_{th}$ and $a<a_{th}$).
We present a detailed numerical simulation study of a two dimensional system of particles interacting via the Weeks-Chandler-Anderson potential, the repulsive part of the Lennard-Jones potential. With reduction of density, the system shows a two-step melting: a continuous melting from solid to hexatic phase, followed by a a first order melting of hexatic to liquid. The solid-hexatic melting is consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario and shows dislocation unbinding. The first order melting of hexatic to fluid phase, on the other hand, is dominated by formation of string of defects at the hexatic-fluid interfaces.
We study a granular gas of viscoelastic particles (kinetic energy loss upon collision is a function of the particles relative velocities at impact) subject to a stochastic thermostat. We show that the system displays anomalous cooling and heating rates during thermal relaxation processes, this causing the emergence of thermal memory. In particular, a significant textit{Mpemba effect} is present; i.e., an initially hotter/cooler granular gas can cool down/heat up faster than an in comparison cooler/hotter granular gas. Moreover, a textit{Kovacs effect} is also observed; i.e., a non-monotonic relaxation of the granular temperature --if the gas undergoes certain sudden temperature changes before fixing its value. Our results show that both memory effects have distinct features, very different and eventually opposed to those reported in theory for granular fluids under simpler collisional models. We study our system via three independent methods: approximate solution of the kinetic equation time evolution and computer simulations (both molecular dynamics simulations and Direct Simulation Monte Carlo method), finding good agreement between them.
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.