No Arabic abstract
Bismuth oxyselenide (Bi$_2$O$_2$Se) attracts great interest as a potential n-type complement to p-type thermoelectric oxides in practical applications. Previous investigations were generally focused on polycrystals. Here, we performed a study on the thermoelectric properties of Bi$_2$O$_2$Se single crystals. Our samples exhibit electron mobility as high as 250 cm$^2.$V$^{-1}$.s$^{-1}$ and thermal conductivity as low as $2$ W.m$^{-1}$.K$^{-1}$ near room temperature. The maximized figure of merit is yielded to be 0.188 at 390 K, higher than that of polycrystals. Consequently, a rough estimation of the phonon mean free path ($ell_textrm{ph}$) from the kinetic model amounts to 12 $r{A}$ at 390 K and follows a $T^{-1}$ behavior. An extrapolation of $ell_textrm{ph}$ to higher temperatures indicates that this system approaches the Ioffe-Regel limit at about 1100 K. In light of the phonon dispersions, we argue that the ultralow $ell_textrm{ph}$ is attributed to intense anharmonic phonon-phonon scattering, including Umklapp process and acoustic to optical phonon scattering. Our results suggest that single crystals provide a further improvement of thermoelectric performance of Bi$_2$O$_2$Se.
We analyze the anisotropic electrical and thermal transport measurements in single crystals of In2Te5 belonging to monoclinic space group C12 c1 with the temperature gradient applied parallel and perpendicular to the crystallographic c-axis of the crystals. The thermal conductivity along the c-axis thermal conductivity parallel was found to smaller by a factor of 2 compared to the thermal conductivity along the direction perpendicular to the c-axis over the entire temperature range. In contrast, the Seebeck coefficient along the c-axis parallel was found to be higher than its value along the direction perpendicular to the c-axis. At room temperature, the figure of merit ZT parallel is found to be 4 times larger as compared to the figure of merit ZT perpendicular.
The magnetic and transport properties of Fe-deficient Fe5GeTe2 single crystals (Fe5-xGeTe2 with x~0.3) were studied and the impact of thermal processing was explored. Quenching crystals from the growth temperature has been previously shown to produce a metastable state that undergoes a strongly hysteretic first-order transition upon cooling below ~100K. The first-order transition impacts the magnetic properties, yielding an enhancement in the Curie temperature T_C from 270 to 310K. In the present work, T_HT ~550K has been identified as the temperature above which metastable crystals are obtained via quenching. Diffraction experiments reveal a structural change at this temperature, and significant stacking disorder occurs when samples are slowly cooled through this temperature range. The transport properties are demonstrated to be similar regardless of the crystals thermal history. The scattering of charge carriers appears to be dominated by moments fluctuating on the Fe(1) sublattice, which remain dynamic down to 100-120K. Maxima in the magnetoresistance and anomalous Hall resistance are observed near 120K. The Hall and Seebeck coefficients are also impacted by magnetic ordering on the Fe(1) sublattice. The data suggest that both electrons and holes contribute to conduction above 120K, but that electrons dominate at lower temperature when all of the Fe sublattices are magnetically ordered. This study demonstrates a strong coupling of the magnetism and transport properties in Fe5-xGeTe2 and complements the previous results that demonstrated strong magnetoelastic coupling as the Fe(1) moments order. The published version of this manuscript is DOI:10.1103/PhysRevMaterials.3.104401 (2019)
We found that the electronic transport property of SnSe single crystals was sensitive to oxygen content. Semiconducting SnSe single crystals were obtained by using Sn of grain form as a starting material while powder Sn resulted in metallic SnSe. X-ray photoelectron spectroscopy analysis revealed that the surfaces of raw Sn were oxidized, where the volume fraction was relatively low in grain Sn. This demonstrates that contamination of oxygen causes metallic behavior in grown SnSe single crystals.
The discovery of high thermoelectric performance in n-type polycrystalline Mg3(Sb,Bi)2 based Zintl compounds has ignited intensive research interest. However, some fundamental questions concerning the anisotropic transport properties and the origin of intrinsically low thermal conductivity are still elusive, requiring the investigation of single crystals. In this work, high-quality p-type Mg3Sb2 and Mg3Bi2 single crystals have been grown by using a self-flux method. The electrical resistivity r{ho} of Mg3Bi2 single crystal displays an anisotropy with r{ho} in-plane twice larger than out-of-plane. The low-temperature heat capacity and lattice thermal conductivity of Mg3Sb2 and Mg3Bi2 single crystals have been investigated by using the Debye-Callaway model, from which the existence of low-lying vibration mode could be concluded. Large Gruneisen parameters and strong anharmonicity are found responsible for the intrinsically low thermal conductivity. Moreover, grain boundary scattering does not contribute significantly to suppress the lattice thermal conductivity of polycrystalline Mg3Sb2. Our results provide insights into the intrinsic transport properties of Mg3X2 and could pave a way to realize enhanced thermoelectric performance in single-crystalline Mg3X2-based Zintl compounds.
We present an investigation of the thermoelectric properties of cubic perovskite SrTiO3. The results are derived from a combination of calculated transport functions obtained from Boltzmann transport theory in the constant scattering time approximation based on the electronic structure and existing experimental data for La-doped SrTiO3. The figure of merit ZT is modeled with respect to carrier concentration and temperature. The model predicts a relatively high $ZT$ at optimized doping, and suggests that the $ZT$ value can reach 0.7 at T = 1400 K. Thus $ZT$ can be improved from the current experimental values by carrier concentration optimization.