No Arabic abstract
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose reactive risk signal interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable propositions that may model humans as well as random environmental events such as sensor failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited to) the Conditional Value-at-Risk, to measure the risk of violating certain spatial specifications. Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise a game-based approach. Third, we propose a reactive planning and control framework for dynamical control systems under ReRiSITL specifications.
Motivated by the recent interest in cyber-physical and autonomous robotic systems, we study the problem of dynamically coupled multi-agent systems under a set of signal temporal logic tasks. In particular, the satisfaction of each of these signal temporal logic tasks depends on the behavior of a distinct set of agents. Instead of abstracting the agent dynamics and the temporal logic tasks into a discrete domain and solving the problem therein or using optimization-based methods, we derive collaborative feedback control laws. These control laws are based on a decentralized control barrier function condition that results in discontinuous control laws, as opposed to a centralized condition resembling the single-agent case. The benefits of our approach are inherent robustness properties typically present in feedback control as well as satisfaction guarantees for continuous-time multi-agent systems. More specifically, time-varying control barrier functions are used that account for the semantics of the signal temporal logic tasks at hand. For a certain fragment of signal temporal logic tasks, we further propose a systematic way to construct such control barrier functions. Finally, we show the efficacy and robustness of our framework in an experiment including a group of three omnidirectional robots.
A framework for the event-triggered control synthesis under signal temporal logic (STL) tasks is proposed. In our previous work, a continuous-time feedback control law was designed, using the prescribed performance control technique, to satisfy STL tasks. We replace this continuous-time feedback control law by an event-triggered controller. The event-triggering mechanism is based on a maximum triggering interval and on a norm bound on the difference between the value of the current state and the value of the state at the last triggering instance. Simulations of a multi-agent system quantitatively show the efficacy of using an event-triggered controller to reduce communication and computation efforts.
In this paper, we present a mechanism for building hybrid system observers to differentiate between specific positions of the hybrid system. The mechanism is designed through inferring metric temporal logic (MTL) formulae from simulated trajectories from the hybrid system. We first approximate the system behavior by simulating finitely many trajectories with timerobust tube segments around them. These time-robust tube segments account for both spatial and temporal uncertainties that exist in the hybrid system with initial state variations. The inferred MTL formulae classify different time-robust tube segments and thus can be used for classifying the hybrid system behaviors in a provably correct fashion. We implement our approach on a model of a smart building testbed to distinguish two cases of room occupancy.
We develop a probabilistic control algorithm, $texttt{GTLProCo}$, for swarms of agents with heterogeneous dynamics and objectives, subject to high-level task specifications. The resulting algorithm not only achieves decentralized control of the swarm but also significantly improves scalability over state-of-the-art existing algorithms. Specifically, we study a setting in which the agents move along the nodes of a graph, and the high-level task specifications for the swarm are expressed in a recently-proposed language called graph temporal logic (GTL). By constraining the distribution of the swarm over the nodes of the graph, GTL can specify a wide range of properties, including safety, progress, and response. $texttt{GTLProCo}$, agnostic to the number of agents comprising the swarm, controls the density distribution of the swarm in a decentralized and probabilistic manner. To this end, it synthesizes a time-varying Markov chain modeling the time evolution of the density distribution under the GTL constraints. We first identify a subset of GTL, namely reach-avoid specifications, for which we can reduce the synthesis of such a Markov chain to either linear or semi-definite programs. Then, in the general case, we formulate the synthesis of the Markov chain as a mixed-integer nonlinear program (MINLP). We exploit the structure of the problem to provide an efficient sequential mixed-integer linear programming scheme with trust regions to solve the MINLP. We empirically demonstrate that our sequential scheme is at least three orders of magnitude faster than off-the-shelf MINLP solvers and illustrate the effectiveness of $texttt{GTLProCo}$ in several swarm scenarios.
Temporal logics provide a formalism for expressing complex system specifications. A large body of literature has addressed the verification and the control synthesis problem for deterministic systems under such specifications. For stochastic systems or systems operating in unknown environments, however, only the probability of satisfying a specification has been considered so far, neglecting the risk of not satisfying the specification. Towards addressing this shortcoming, we consider, for the first time, risk metrics, such as (but not limited to) the Conditional Value-at-Risk, and propose risk signal temporal logic. Specifically, we compose risk metrics with stochastic predicates to consider the risk of violating certain spatial specifications. As a particular instance of such stochasticity, we consider control systems in unknown environments and present a determinization of the risk signal temporal logic specification to transform the stochastic control problem into a deterministic one. For unicycle-like dynamics, we then extend our previous work on deterministic time-varying control barrier functions.