Do you want to publish a course? Click here

Control Barrier Functions for Nonholonomic Systems under Risk Signal Temporal Logic Specifications

78   0   0.0 ( 0 )
 Added by Lars Lindemann
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Temporal logics provide a formalism for expressing complex system specifications. A large body of literature has addressed the verification and the control synthesis problem for deterministic systems under such specifications. For stochastic systems or systems operating in unknown environments, however, only the probability of satisfying a specification has been considered so far, neglecting the risk of not satisfying the specification. Towards addressing this shortcoming, we consider, for the first time, risk metrics, such as (but not limited to) the Conditional Value-at-Risk, and propose risk signal temporal logic. Specifically, we compose risk metrics with stochastic predicates to consider the risk of violating certain spatial specifications. As a particular instance of such stochasticity, we consider control systems in unknown environments and present a determinization of the risk signal temporal logic specification to transform the stochastic control problem into a deterministic one. For unicycle-like dynamics, we then extend our previous work on deterministic time-varying control barrier functions.



rate research

Read More

We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method.
This paper studies the robust satisfiability check and online control synthesis problems for uncertain discrete-time systems subject to signal temporal logic (STL) specifications. Different from existing techniques, this work proposes an approach based on STL, reachability analysis, and temporal logic trees. Firstly, a real-time version of STL semantics and a tube-based temporal logic tree are proposed. We show that such a tree can be constructed from every STL formula. Secondly, using the tube-based temporal logic tree, a sufficient condition is obtained for the robust satisfiability check of the uncertain system. When the underlying system is deterministic, a necessary and sufficient condition for satisfiability is obtained. Thirdly, an online control synthesis algorithm is designed. It is shown that when the STL formula is robustly satisfiable and the initial state of the system belongs to the initial root node of the tube-based temporal logic tree, it is guaranteed that the trajectory generated by the controller satisfies the STL formula. The effectiveness of the proposed approach is verified by an automated car overtaking example.
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose reactive risk signal interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable propositions that may model humans as well as random environmental events such as sensor failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited to) the Conditional Value-at-Risk, to measure the risk of violating certain spatial specifications. Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise a game-based approach. Third, we propose a reactive planning and control framework for dynamical control systems under ReRiSITL specifications.
Motivated by the recent interest in cyber-physical and autonomous robotic systems, we study the problem of dynamically coupled multi-agent systems under a set of signal temporal logic tasks. In particular, the satisfaction of each of these signal temporal logic tasks depends on the behavior of a distinct set of agents. Instead of abstracting the agent dynamics and the temporal logic tasks into a discrete domain and solving the problem therein or using optimization-based methods, we derive collaborative feedback control laws. These control laws are based on a decentralized control barrier function condition that results in discontinuous control laws, as opposed to a centralized condition resembling the single-agent case. The benefits of our approach are inherent robustness properties typically present in feedback control as well as satisfaction guarantees for continuous-time multi-agent systems. More specifically, time-varying control barrier functions are used that account for the semantics of the signal temporal logic tasks at hand. For a certain fragment of signal temporal logic tasks, we further propose a systematic way to construct such control barrier functions. Finally, we show the efficacy and robustness of our framework in an experiment including a group of three omnidirectional robots.
The use of spatio-temporal logics in control is motivated by the need to impose complex spatial and temporal behavior on dynamical systems, and to control these systems accordingly. Synthesizing correct-by-design control laws is a challenging task resulting in computationally demanding methods. We consider efficient automata-based planning for continuous-time systems under signal interval temporal logic specifications, an expressive fragment of signal temporal logic. The planning is based on recent results for automata-based verification of metric interval temporal logic. A timed signal transducer is obtained accepting all Boolean signals that satisfy a metric interval temporal logic specification, which is abstracted from the signal interval temporal logic specification at hand. This transducer is modified to account for the spatial properties of the signal interval temporal logic specification, characterizing all real-valued signals that satisfy this specification. Using logic-based feedback control laws, such as the ones we have presented in earlier works, we then provide an abstraction of the system that, in a suitable way, aligns with the modified timed signal transducer. This allows to avoid the state space explosion that is typically induced by forming a product automaton between an abstraction of the system and the specification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا